- #1

- 3

- 0

Assume all dims in millimeters and kilos and I am working on a hydraulic set up

I have a cylinder Ø200mm diameter x 400 high, it has a hole in the middle Ø10mm going into a capped Ø10mm pipe. The cylinder is filled with water up to 300mm high. There is a bouyant weight that floats on top of the water that weighs 10Kg.

Q1. Firstly, does this bouyant weight increase the pressure at the bottom of the tank (at the Ø10mm cap)? If so, what is the pressure difference if the weight was not there? Or because thre weight floats on top, is the pressure difference negligible?

Q2. If the water was emptied out what pressure/weight/volume of water would be needed in order to fill the cylinder back up with the 10KG weight sitting over the Ø10mm pipe? Assuming that water cannot pass around the weight. ALso, if the tank of water that is being used to fill the cylinder was elevated, would this help in using a smaller tank so the pressure increases?

Any help appreciated. Its been many many moons since I did any physics, hydraulics calculations...

TIA

Ben

I have a cylinder Ø200mm diameter x 400 high, it has a hole in the middle Ø10mm going into a capped Ø10mm pipe. The cylinder is filled with water up to 300mm high. There is a bouyant weight that floats on top of the water that weighs 10Kg.

Q1. Firstly, does this bouyant weight increase the pressure at the bottom of the tank (at the Ø10mm cap)? If so, what is the pressure difference if the weight was not there? Or because thre weight floats on top, is the pressure difference negligible?

Q2. If the water was emptied out what pressure/weight/volume of water would be needed in order to fill the cylinder back up with the 10KG weight sitting over the Ø10mm pipe? Assuming that water cannot pass around the weight. ALso, if the tank of water that is being used to fill the cylinder was elevated, would this help in using a smaller tank so the pressure increases?

Any help appreciated. Its been many many moons since I did any physics, hydraulics calculations...

TIA

Ben

Last edited: