Preventing super-long Lagrangian in triple+ pendulums

  • Context: Graduate 
  • Thread starter Thread starter ellipsis
  • Start date Start date
  • Tags Tags
    Lagrangian
Click For Summary
SUMMARY

This discussion focuses on the challenges of deriving equations of motion for triple and higher pendulum systems using Lagrangian mechanics. The user has successfully formulated equations for one, two, and three pendulums but faces difficulties with larger systems due to the complexity of the resulting expressions. Suggestions include using small angle approximations and normal modes as generalized coordinates, although the user prefers to maintain the full complexity of the system. The discussion highlights the need for effective coordinate transformations or simplifications to manage the increasing number of terms in the Lagrangian as the number of pendulums increases.

PREREQUISITES
  • Lagrangian mechanics fundamentals
  • Euler-Lagrange equations
  • Mathematica for numerical simulations
  • Understanding of non-linear oscillators
NEXT STEPS
  • Explore coordinate transformations in Lagrangian mechanics
  • Research normal mode analysis for coupled oscillators
  • Investigate numerical methods for stiff systems in simulations
  • Learn about mass-spring system simulations and their applications
USEFUL FOR

Physicists, mechanical engineers, and researchers interested in advanced dynamics, particularly those working with multi-pendulum systems and numerical simulations of complex mechanical systems.

ellipsis
Messages
158
Reaction score
24
Hey all.

I've been experimenting with Lagrangian mechanics (and numerical simulation of physical systems), and I've come across a problem.

By finding the Lagrangian, then using the Euler-Lagrange formula, I can find equations of motion (in generalized angular coordinates with respect to the vertical) for n-pendulums. Here are a few I've found:

n = 1.
$$
\boxed{
{\ddot{\theta}} = -\frac{g \sin (\theta)}{L}
}
$$
n = 2.
$$
\boxed{
{\ddot{\theta}_1} = \frac{-{L_1} {m_2} {\dot{\theta}_1}^2 \sin (2 {\theta}-2 {\theta_2})-2 {L_2} {m_2} {\dot{\theta}_2}^2 \sin ({\theta}-{\theta_2})-g {m_2} \sin ({\theta}-2 {\theta_2})-2 g {m_1} \sin ({\theta})-g {m_2} \sin ({\theta})}{{L_1} (-{m_2} \cos (2 {\theta}-2 {\theta_2})+2 {m_1}+{m_2})}\\

{\ddot{\theta}_2} =-\frac{{L_1} {\ddot{\theta}_1} \cos ({\theta}-{\theta_2})-{L_1} {\dot{\theta}_1}^2 \sin ({\theta}-{\theta_2})+G \sin ({\theta_2})}{{L_2}}
}
$$
n = 3.
$$
\small{
{\ddot{\theta}_1} = -\frac{2 {m_2} \sin ({\theta}-{\theta_2}) \left(({m_2}+{m_3}) \left({L_1} {\dot{\theta}_1}^2 \cos ({\theta}-{\theta_2})+{L_2} {\dot{\theta}_2}^2\right)+{L_3} {m_3} {\dot{\theta}_3}^2 \cos ({\theta_2}-{\theta_3})\right)+g \sin ({\theta}) (-{m_1} {m_3} \cos (2 ({\theta_2}-{\theta_3}))+{m_1} (2 {m_2}+{m_3})+{m_2} ({m_2}+{m_3}))+g {m_2} ({m_2}+{m_3}) \sin ({\theta}-2 {\theta_2})}{{L_1} (-{m_2} ({m_2}+{m_3}) \cos (2 ({\theta}-{\theta_2}))-{m_1} {m_3} \cos (2 ({\theta_2}-{\theta_3}))+{m_3} ({m_1}+{m_2})+{m_2} (2 {m_1}+{m_2}))}
}
$$

$$
\small{
{\ddot{\theta}_2} =\frac{-2 {m_3} \sin ({\theta_2}-{\theta_3}) \left({L_1} {\ddot{\theta}_1} \sin ({\theta}-{\theta_3})+{L_2} {\dot{\theta}_2}^2 \cos ({\theta_2}-{\theta_3})+{L_3} {\dot{\theta}_3}^2\right)-2 {L_1} {m_2} {\ddot{\theta}_1} \cos ({\theta}-{\theta_2})+{L_1} {\dot{\theta}_1}^2 ((2 {m_2}+{m_3}) \sin ({\theta}-{\theta_2})-{m_3} \sin ({\theta}+{\theta_2}-2 {\theta_3}))-G ({m_3} \sin ({\theta_2}-2 {\theta_3})+(2 {m_2}+{m_3}) \sin ({\theta_2}))}{{L_2} (-{m_3} \cos (2 ({\theta_2}-{\theta_3}))+2 {m_2}+{m_3})}
}
$$

$$
\small{
{\ddot{\theta}_3} =-\frac{{L_1} {\ddot{\theta}_1} \cos ({\theta}-{\theta_3})-{L_1} {\dot{\theta}_1}^2 \sin ({\theta}-{\theta_3})+{L_2} {\ddot{\theta}_2} \cos ({\theta_2}-{\theta_3})-{L_2} {\dot{\theta}_1}^2 \sin ({\theta_2}-{\theta_3})+G \sin ({\theta_3})}{{L_3}}
}
$$

These pendulums have rigid, massless rods. There is no joint or air friction. As you can see, these coordinates result in... large expressions.

I've automated this process using Mathematica, but the resulting equations are too large to simplify for pendulums n=4 and above (Quadruple and above).

Is there any coordinate change or other simplification I can do to keep this solvable? If I do this in Cartesian coordinates instead, might that help?

When N gets larger, solving the system of Euler-Lagrange equations (to find the actual equations of motion) becomes difficult (4 equations, 4 unknowns, and above).

I've tried formulating a n=1 pendulum in Cartesian coordinates, but I get spring pendulum systems instead. How do I enforce the condition x^2+y^2=L^2 in a natural manner, when calculating the Lagrangian?

Thanks for any insight given,
ellipsis
 
Physics news on Phys.org
First, these are not that bad. It's about as simple as you can get given the complexity of the system.
Second, you can get rid of the trig by using small angle approximations. Whether this is simpler or not is a matter of taste.
Third, if you know the normal modes, using them as your generalized coordinates won't make the expressions simpler, but this will make the subsequent math simpler.
 
  • Like
Likes   Reactions: ellipsis
Vanadium 50 said:
First, these are not that bad. It's about as simple as you can get given the complexity of the system.
Second, you can get rid of the trig by using small angle approximations. Whether this is simpler or not is a matter of taste.
Third, if you know the normal modes, using them as your generalized coordinates won't make the expressions simpler, but this will make the subsequent math simpler.
Thanks for your response!

The small angle approximation is not something I'm interested in (All of this is due to wanting to see how pendulums really work), but I'll keep that in mind.

Do you know anything about calculating equations of motion in Cartesian coordinates?
 
I think using Catersians will not simplify this. You are going from an N dimensional problem to a 2N dimensional problem with N constraints - three times as many elements.
 
I want to see how a pendulum system with, say, n=100 works. There has to be a way to "generalize" the behavior of one component of a pendulum given the components it is immediately attached to.
 
With 100 pendula, you're going to have 100 degrees of freedom. With 100 degrees of freedom, you're going to have hundreds of terms in your Lagrangian.
 
Vanadium 50 said:
With 100 pendula, you're going to have 100 degrees of freedom. With 100 degrees of freedom, you're going to have hundreds of terms in your Lagrangian.

How is it the case people simulate arbitrary mass-spring systems, then? I'm considering taking the approach of approximating pendulums by springs with arbitrarily high spring constants, but the problem becomes 'stiff' in that case, and requires low time-steps.

A hundred terms in my Lagrangian is fine. As of now, it's more like O(n^2) number of terms in my Lagrangian...
 
ellipsis said:
How is it the case people simulate arbitrary mass-spring systems, then? I'm considering taking the approach of approximating pendulums by springs with arbitrarily high spring constants, but the problem becomes 'stiff' in that case, and requires low time-steps.

A hundred terms in my Lagrangian is fine. As of now, it's more like O(n^2) number of terms in my Lagrangian...

The pendula are non-linear oscillators.
For small angles, they are approximately linear.
 

Similar threads

  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 76 ·
3
Replies
76
Views
7K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 29 ·
Replies
29
Views
4K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 6 ·
Replies
6
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K