MHB Prime and Maximal Ideals .... Bland -AA - Theorem 3.2.16 .... ....

  • Thread starter Thread starter Math Amateur
  • Start date Start date
  • Tags Tags
    Prime Theorem
Math Amateur
Gold Member
MHB
Messages
3,920
Reaction score
48
I am reading The Basics of Abstract Algebra by Paul E. Bland ...

I am focused on Section 3.2 Subrings, Ideals and Factor Rings ... ...

I need help with the proof of Theorem 3.2.16 ... ... Theorem 3.2.16 and its proof reads as follows:
View attachment 8266
In the above proof of $$(3) \Longrightarrow (1)$$ by Bland, we read the following:

" ... ... Then $$n_1 n_2 = p \in p \mathbb{Z}$$, so either $$n_1 \in p \mathbb{Z}$$ or $$n_2 \in p \mathbb{Z}$$. ... ... Can someone please explain how/why exactly ... $$n_1 n_2 = p \in p \mathbb{Z}$$ implies that either $$n_1 \in p \mathbb{Z}$$ or $$n_2 \in p \mathbb{Z}$$. ... ... Peter
========================================================
***NOTE***

It may help readers to have access to Bland's definition of a prime ideal ... so I am providing the same as follows:
View attachment 8267
View attachment 8268
Sorry about the legibility ... but Bland shades his definitions ...Peter
 
Physics news on Phys.org
The answer to your question lies in the definition: if $P$ is a prime ideal and $xy \in P$, then eiter $x \in P$ or $y \in P$.

It is given that $p \mathbb{Z}$ is aprime ideal, of course $p=p1 \in p \mathbb{Z}$. So, if $p=n_1 n_2 \in p \mathbb{Z}$, then either $n_1 \in p \mathbb{Z}$ or $n_2 \in p \mathbb{Z}$ by definition.
 
steenis said:
The answer to your question lies in the definition: if $P$ is a prime ideal and $xy \in P$, then eiter $x \in P$ or $y \in P$.

It is given that $p \mathbb{Z}$ is aprime ideal, of course $p=p1 \in p \mathbb{Z}$. So, if $p=n_1 n_2 \in p \mathbb{Z}$, then either $n_1 \in p \mathbb{Z}$ or $n_2 \in p \mathbb{Z}$ by definition.

Thanks Steenis ...

Peter
 
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
Back
Top