Prime Ideals in Z[sqrt(2)] and Cosets in ZxZ/I

  • Thread starter Thread starter kobulingam
  • Start date Start date
  • Tags Tags
    Algebra Midterm
kobulingam
Messages
10
Reaction score
0
I'm in an algebra (ring) class and I'm looking at a previous midterm (I have attached it here to prove that this is not homework problem).

Can anyone tell me how to answer question 3 and 5? I will repeat again in here:

3) Let R = Z[sqrt(2)] and P = <sqrt(2)> the ideal generated by sqrt(2)

a) Prove that P is a prime ideal.
b) Let D = Rp (localization of R at complement of P, aka ring of fractions of R w.r.t. (R-P) )
Let Pp be ideal of Rp generated by sqrt(2). Is Pp a prime ideal of Rp? Prove answer.

5) Let R = ZxZ (direct product of integer sets with operations defined as usual componentwise). Let I = < (4,9), (6,12) > ideal generated by those two elements. How many elements (cosets of I) does R/I have?


Any help would be appreciated. Let me repeat that this is not homework, as I have attached file proving that these are past test questions (which I got from school's math society website).
 

Attachments

Physics news on Phys.org
For (3), first show how any member of Z[sqrt(2)] can be written. How is that related to the ideal <sqrt(2)>? IS that an ideal in Z[sqrt(2)]? What does it mean to say it is a prime ideal?

For 5, again, what IS an ideal of ZxZ? Can you show that the set generated by <(4,9), (6,12)> IS an ideal? What are "cosets" of that set?
 
HallsofIvy said:
For (3), first show how any member of Z[sqrt(2)] can be written. How is that related to the ideal <sqrt(2)>? IS that an ideal in Z[sqrt(2)]? What does it mean to say it is a prime ideal?

For 5, again, what IS an ideal of ZxZ? Can you show that the set generated by <(4,9), (6,12)> IS an ideal? What are "cosets" of that set?

I got 3)a) by doing exactly what you are implying, but can't get it to work for 3)b).


For 5), yes, a set generated by memebers of a ring like that are always ideals.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top