Primitive Matrix: Is M^k Positive?

  • Thread starter Thread starter bob j
  • Start date Start date
  • Tags Tags
    Matrix Primitive
bob j
Messages
22
Reaction score
0
Hi All,
I have the following matrix

M = M_1 M_2 M_3 ... M_n

M is then a product of n matrices. Each of those has dimension 2n by 2n and has the same "look". Consider M_n: this matrix is equal to the identity matrix, 2n by 2n. The only thing different from the identity is that the 3 by 3 block on the bottom right of the matrix is composed of positive elements, and less than one. the other matrices are the same: matrix M_i has the 3 by 3 positive block placed at position 2(i-1) + 1, while the rest of the matrix is equal to the identity matrix.

My question is this. Is M primitive? Or, in other words, is M such that, for some k, M^k is positive? I tried with MATLAB and M is positive. Does anybody know if there is a theorem I can use?

Thanks
 
Physics news on Phys.org
If I'm reading your post correctly, it seems to me that M is a product of positive matrices, and hence is a positive matrix itself.
 
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
Back
Top