Primitive roots - annoying problem

  • Thread starter Thread starter RichardCypher
  • Start date Start date
  • Tags Tags
    Primitive Roots
RichardCypher
Messages
14
Reaction score
0
Let r be a primitive root of a prime number p \geq 3. Prove that if p \equiv 1 (mod 4), then -r is also a primitive root of p.

I've been told it's quite easy, but I can't see why it's true for the life of me :frown:
 
Physics news on Phys.org
If r is a primitive root, then r^[(p-1)/2] is not equal to 1. The question is about -r.
 
thanks for the reply :smile:
if r is a primitve root then r^[(p-1)/2] is -1 (mod p). However, (-r)^[(p-1)/2] is the same since (p-1)/2 is even, am I right?

Where do we go from here? Maybe I could say that the order of (-r) couldn't be lower than (p-1), because if it was so, ord(-r)|(p-1)/2 and then (-r)^[(p-1)/2]=1(mod p) contradicting the fact that p \neq 2?
Am I on the right track?

Thanks again! :smile:
 
Richard Cypher: Am I on the right track?

Sounds O.K. to me. Take, (-r)^2 = r^2, well then what power is necessry to raise r^2 to 1?
 
OK, I got it!
Bunch of thanks for your help!:biggrin:
 
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top