Principle of Least Action - not always valid?

AI Thread Summary
The Principle of Least Action is only valid for small segments of a system's path in phase space, as noted in Landau & Lifgarbagez Mechanics. This raises questions about the validity of deriving Lagrange's Equation, particularly regarding the nature of extremal action—whether it represents a minimum, maximum, or saddle point. The discussion highlights that while the equation typically provides accurate results, the term "least action" can be misleading. It emphasizes the need to analyze additional quantities to determine the true nature of the extremal action. Overall, understanding these nuances is crucial for applying the principle effectively in various contexts.
Master J
Messages
219
Reaction score
0
It is stated in Landau & Lifgarbagez Mechanics that the Principle of Least Action is not always valid for the entire path of a system in phase space, but only for a sufficiently small segment of the path.

Can anyone expand on this?

How can we be sure that when we derive Lagrange's Equation that the principle is valid?

I guess the statement has slightly confused me - what are the consequences of this?
 
Physics news on Phys.org
Basically, the equation gives a geodesic in some space. On a sphere, the great circles are geodesic. But between two points, you can go either direction on the geodesic, the short way or the long way. But between any two nearby points on the geodesic, it is always the short way. So some other quantity needs to be examined to figure out whether the extremal of the action we get is a minimum, saddle point, or maximum. The equation is almost always right, just the name "least action" isn't. Some specific examples are given by:
http://www.people.fas.harvard.edu/~djmorin/chap6.pdf
http://www.eftaylor.com/pub/Gray&TaylorAJP.pdf

The conditions under which differential equations can be derived from a variational principle are discussed by http://www.dic.univ.trieste.it/perspage/tonti/
http://arxiv.org/abs/1008.3177
 
Last edited by a moderator:
Thread 'Question about pressure of a liquid'
I am looking at pressure in liquids and I am testing my idea. The vertical tube is 100m, the contraption is filled with water. The vertical tube is very thin(maybe 1mm^2 cross section). The area of the base is ~100m^2. Will he top half be launched in the air if suddenly it cracked?- assuming its light enough. I want to test my idea that if I had a thin long ruber tube that I lifted up, then the pressure at "red lines" will be high and that the $force = pressure * area$ would be massive...
I feel it should be solvable we just need to find a perfect pattern, and there will be a general pattern since the forces acting are based on a single function, so..... you can't actually say it is unsolvable right? Cause imaging 3 bodies actually existed somwhere in this universe then nature isn't gonna wait till we predict it! And yea I have checked in many places that tiny changes cause large changes so it becomes chaos........ but still I just can't accept that it is impossible to solve...
Back
Top