Infrasound said:
As a layperson...(Who is trying to understand the atom in a bit more detail).
In the past, I have most often seen the atoms drawn with electron clouds that have bands of varying density. I understand the density of the bands represent areas of higher probability.
I have often seen models of atoms drawn with clouds which are most dense near the nucleus with decreasing density as the radius increases.Question:
Is there actually an intuitive way of understanding WHY atoms have these bands of higher probability? Is there an intuitive reason why the cloud is "thicker" in some areas/bands/distances from the nucleus? Is there a mathematical reason why the cloud is "thicker" in some areas/bands/distance from the nucleus?Or, are the bands just a fact of nature (sort of a "that's just the way it is as far as we can tell), which we have measured and accepted without and deeper understanding of cause?
It's tough to answer those questions in a satisfactory way without getting into the math, which is often where the layperson gets lost. You may already be familiar with some of the following points, but bear with me, and I hope it will be clearer to you in the end how it all works.
Basically, quantum mechanics tells us that the electrons around an atom are distributed as waves in 3-D space .. we call these "wavefunctions". Furthermore, QM tells us that they are standing waves, analogous to harmonics of a violin string:
but in 3-D. As you can see, this means that the places in space where they have zero amplitude (called "nodes" stay fixed, as do the places where the amplitude is largest, although the latter points change phase (i.e. oscillate up and down) with time. Notice in the image that each harmonic has one more node than the next, and that each harmonic goes to zero at the end of the string. This is also true of the electron wavefunctions around atoms .. only certain solutions with nodes in well-defined places are allowed, and each wavefunction has a characteristic energy associated with it, which increases with the number of nodes (the lowest energy state, or "ground state", doesn't have any nodes, although it still has a non-zero energy). We call this "quantization of energy states", since only certain values of energy are allowed.
One of the fundamental postulates of QM is called the "Born interpretation". What that tells us is that if we take the square of the wavefunction representing one of the electronic energy states, then that tells us about the probability of finding an electron at a given position around the atom. Now, remember that the amplitude of the wavefunction at a node is guaranteed to be zero .. so that means that the probability of finding the electron at the position corresponding to a node is also zero. On the other hand, the probability of finding the electron at the peak or valley of a wave is rather high.
So, when you see images like the ones you are describing, the more intense bands represent the peaks of the electronic wavefunction (really the square of the wavefunction), while the regions with lower probability are concentrated around nodes of the wavefunction.
Now, you may now want to know *why* the quantum solutions to the electronic structure of atoms are waves in the first place. For that I suggest that you read the wikipedia pages on the de Broglie wavelength and the Heisenberg Uncertainty Principle to start, and then come back and ask more questions as they arise.
[NOTE: One technicality point I neglected in the above description is that fact that the solutions I describe are really for one-electron atoms only ... that is because electrons are charged particles that repel each other, which makes the solutions of multi-electron atoms much more complicated. However, most of the time the sorts of pictures you describe are for the H-atom solutions, like these:
In any case, the explanation I gave forms the basis for understanding electronic distribution around all atoms.