Probability at different time scales

  • Thread starter Thread starter garethtilley
  • Start date Start date
  • Tags Tags
    Probability Time
garethtilley
Messages
2
Reaction score
0
Hi,

Was wondering if anyone had any thoughts on how to tackle the below problem:

I have a single random variable, X. I have generated multiple distributions (not fitted yet, not sure I will/can fit them) at different time scales. So, for example, a distribution of values of X after 10 seconds from time zero and another after 20 seconds from time zero etc. There are no assumptions around mean reversion or unbounded variance or anything like that. Only empirical results. Having generated the various distributions I can at any point do a lookup on them, for some value of X, let's say the current value, and I'll get back a series of probabilities of X remaining constant (in this case) for various times into the future.

So here's my problem, given these multiple time scales, I'd like to try get a generalised summary of sorts of what is going on with X. I've considered a few ideas, like just taking a simple average, but obviously that doesn't take order of the times into account. For example, p10sec = 0.2 and p20sec = 0.8 paint a very different view to p10sec = 0.9 and p20sec = 0.2. Any ideas?

I hope that explanation is clear, I'm no statistician!

Regards
Gareth
 
Physics news on Phys.org
Use a distribution function p(x,t) depending on both x & time for X.
If the variable is 'oblivious' (i.e., the distibution which would be observed at a time doesn't affect that at a while later) , p(x,t) can be modeled as q(x)r(t).
 
So if I understand you correctly, you're proposing a building a bivariate distribution on time and value.

I've considered this, if I built that surface, for a given time I'd need to look into the "future" at all the nodes, i.e. 10s, 20s etc. and I'd still end up with a series of probabilities, that some how still need to be summarised, with the order that they're in being important.

I hope that makes sense and I hope I understood your response.
 
Namaste & G'day Postulate: A strongly-knit team wins on average over a less knit one Fundamentals: - Two teams face off with 4 players each - A polo team consists of players that each have assigned to them a measure of their ability (called a "Handicap" - 10 is highest, -2 lowest) I attempted to measure close-knitness of a team in terms of standard deviation (SD) of handicaps of the players. Failure: It turns out that, more often than, a team with a higher SD wins. In my language, that...
Hi all, I've been a roulette player for more than 10 years (although I took time off here and there) and it's only now that I'm trying to understand the physics of the game. Basically my strategy in roulette is to divide the wheel roughly into two halves (let's call them A and B). My theory is that in roulette there will invariably be variance. In other words, if A comes up 5 times in a row, B will be due to come up soon. However I have been proven wrong many times, and I have seen some...
Back
Top