I Probability of a Stochastic Markov process

Aslet
Messages
20
Reaction score
1
Hi everyone! I'm approaching the physics of stochastic processes. In particular I am studying from "Handbook of stochastic processes - Gardiner". This book defines a stationary process like:
$$ p(x_1, t_1; x_2, t_2; ...; x_n, t_n) = p(x_1, t_1 + \epsilon; x_2, t_2 + \epsilon; ...; x_n, t_n + \epsilon) $$
and this means that the statistics of ## X(t) ## is equal to that of ## X(t + \epsilon) ##. Hence the probabilities are only function of ## t_i - t_j ##.
Then the book says the if the process is also Markovian, the only things I need to know are the conditionale probabilities like:
$$ p_s(x_1, t_1 - t_2| x_2, 0) $$
because all joint probabilities can be written as a product of conditional probabilities.
Here comes my question. Is it hence correct for a stationary stochastic Markov process to write for 3 values of ## X(t) ##, for instance:
$$ p_s(x_1, t_1; x_2, t_2; x_3, t_3) = p_s(x_1, t_1 - (t_2 - t_3)| x_2, t_2 - t_3 ) \ p_s(x_2, t_2 - t_3| x_3, 0) \ p_s(x_3) \ $$
or should the probability be written as:
$$ p_s(x_1, t_1; x_2, t_2; x_3, t_3) = p_s(x_1, t_1 - t_2| x_2, 0) \ p_s(x_2, t_2 - t_3| x_3, 0) \ p_s(x_3) \ ?$$
To me the first equation is more understandable.
 
Physics news on Phys.org
Aslet said:
Hi everyone! I'm approaching the physics of stochastic processes. In particular I am studying from "Handbook of stochastic processes - Gardiner".

(The second edition has a lot of corrections to the first edition and I think there is a 3rd edition.)

Is it hence correct for a stationary stochastic Markov process to write for 3 values of ## X(t) ##, for instance:
$$ p_s(x_1, t_1; x_2, t_2; x_3, t_3) = p_s(x_1, t_1 - (t_2 - t_3)| x_2, t_2 - t_3 ) \ p_s(x_2, t_2 - t_3| x_3, 0) \ p_s(x_3) \ $$

What justifies the factor ##p_s(x_1, t_1 - (t_2- t_3)| x_2,t_2 - t_3)##?

If we seek some quantity equivalent to ##p_s(x_1,t_1 | x_2,t_2)## we can translate by ##-t_2## giving ##p_s(x_1, t_1-t_2| x_2,0)##.

Suppose ##t_1 = 100, t_2 = 20, t_3 = 3##. Can you justify saying ##p_s(x_1, 100| x_2,20) = p_s(x_1, 83| x_2,17) ## ?
 
Hi all, I've been a roulette player for more than 10 years (although I took time off here and there) and it's only now that I'm trying to understand the physics of the game. Basically my strategy in roulette is to divide the wheel roughly into two halves (let's call them A and B). My theory is that in roulette there will invariably be variance. In other words, if A comes up 5 times in a row, B will be due to come up soon. However I have been proven wrong many times, and I have seen some...
Thread 'Detail of Diagonalization Lemma'
The following is more or less taken from page 6 of C. Smorynski's "Self-Reference and Modal Logic". (Springer, 1985) (I couldn't get raised brackets to indicate codification (Gödel numbering), so I use a box. The overline is assigning a name. The detail I would like clarification on is in the second step in the last line, where we have an m-overlined, and we substitute the expression for m. Are we saying that the name of a coded term is the same as the coded term? Thanks in advance.
Back
Top