MHB Probability question regarding independence

AI Thread Summary
The discussion revolves around calculating probabilities related to defective screws supplied by a factory. The first part calculates the overall percentage of defective screws, yielding a result of 2.8%. The second part determines the probability that two randomly chosen screws from a box are both defective, resulting in approximately 1.09%. The final part seeks the conditional probability that a box is 100% defective given that both screws chosen are defective. The calculations are verified with a correction noted for a typo in the second part's formula.
Usagi
Messages
38
Reaction score
0
A supplier sends boxes of screws to a factory: 90% of the boxes contain 1% defective, 9% contain 10% defective, and 1% contain 100% defective (eg wrong size).

i) What percentage of screws supplied are defective?

ii) Two screws are chosen from a randomly selected box. What is the probability that both are defective?

iii) Given that both are defective, what is the probability that the box is 100% defective?

I have attempted all 3 parts but I am unsure if my working is correct, would someone be kind enough to verify my working/reasoning? Thank you.

i) Let D be the event that the screws supplied are defective. Let $A_1$ be the event that the box containing 1% defective was sent to the factory. Likewise, let $A_2$ and $A_3$ be the event that the box containing 10% and 100% defective, respectively, that was sent to the factory.

Thus using the total probability theorem we have:

$P(D) = P(A_1)P(D|A_1) + P(A_2)P(D|A_2)+P(A_3)P(D|A_3) = (0.9)(0.01)+0.09(0.1)+0.01(1) = 0.028$

ii) Let Z be the event that two screws are both defective and let $D_i$ be the event that the ith screw is defective from a random box. Thus using the total probability theorem again we have:

$P(Z) = P(A_1)P(Z|A_1)+P(A_2)P(Z|A_2) + P(A_3)P(Z|A_3) = P(A_1)P(D_1 \cap D_2|A_1) + P(A_2)P(D_1 \cap D_2|A_2) + P(A_3)P(D_1 \cap D_2|A_3)$

$= P(A_1)P(D_1|A_1)P(D_2|A_1) + P(A_2)P(D_1|A_2)P(D_2|A_2) + P(A_3)P(D_1|A_3)P(D_2|A_3)$ because we can assume $D_1$ and $D_2$ are conditionally independent of $A_i$'s.

$=0.01(0.01)^2+0.09(0.1)^2+0.01(1)^2 = 0.010901$

iii) We need to find $P(A_3|Z) = \frac{P(A_3)P(Z|A_3)}{P(Z)} = \frac{0.01(1)}{0.010901}$

Any help is greatly appreciated!
 
Mathematics news on Phys.org
Usagi said:
A supplier sends boxes of screws to a factory: 90% of the boxes contain 1% defective, 9% contain 10% defective, and 1% contain 100% defective (eg wrong size).

i) What percentage of screws supplied are defective?

ii) Two screws are chosen from a randomly selected box. What is the probability that both are defective?

iii) Given that both are defective, what is the probability that the box is 100% defective?

I have attempted all 3 parts but I am unsure if my working is correct, would someone be kind enough to verify my working/reasoning? Thank you.

i) Let D be the event that the screws supplied are defective. Let $A_1$ be the event that the box containing 1% defective was sent to the factory. Likewise, let $A_2$ and $A_3$ be the event that the box containing 10% and 100% defective, respectively, that was sent to the factory.

Thus using the total probability theorem we have:

$P(D) = P(A_1)P(D|A_1) + P(A_2)P(D|A_2)+P(A_3)P(D|A_3) = (0.9)(0.01)+0.09(0.1)+0.01(1) = 0.028$

ii) Let Z be the event that two screws are both defective and let $D_i$ be the event that the ith screw is defective from a random box. Thus using the total probability theorem again we have:

$P(Z) = P(A_1)P(Z|A_1)+P(A_2)P(Z|A_2) + P(A_3)P(Z|A_3) = P(A_1)P(D_1 \cap D_2|A_1) + P(A_2)P(D_1 \cap D_2|A_2) + P(A_3)P(D_1 \cap D_2|A_3)$

$= P(A_1)P(D_1|A_1)P(D_2|A_1) + P(A_2)P(D_1|A_2)P(D_2|A_2) + P(A_3)P(D_1|A_3)P(D_2|A_3)$ because we can assume $D_1$ and $D_2$ are conditionally independent of $A_i$'s.

$=0.01(0.01)^2+0.09(0.1)^2+0.01(1)^2 = 0.010901$

iii) We need to find $P(A_3|Z) = \frac{P(A_3)P(Z|A_3)}{P(Z)} = \frac{0.01(1)}{0.010901}$

Any help is greatly appreciated!

For part ii you should have: \(0.9(0.01)^2 + 0.09(0.1)^2+0.01(1)^2\)CB
 
Oh yes, silly me, typo'ed.

Thanks for the confirmation :)
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Back
Top