MHB Probability to get a chocolate snowman or a chocolate reindeer

  • Thread starter Thread starter mathmari
  • Start date Start date
  • Tags Tags
    Probability
Click For Summary
The discussion revolves around calculating the probability of receiving at least 60% chocolate reindeer gifts in a series of Christmas presents, modeled as independent Bernoulli trials. The participants explore the calculation of this probability for 10 gifts, denoted as a_{10}, and discuss the application of Bernoulli's weak law of large numbers to estimate a_{100}. It is noted that while the weak law provides an upper bound, it does not allow for an explicit calculation of a_{10}. The conversation concludes with one participant expressing confidence in solving the posed questions after receiving guidance.
mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :giggle:

$N\in \mathbb{N}$ christmas presents will be distributed. In every gift there is additional either a chocolate snowman or a chocolate reindeer. It will be independent of each other and with the same probability of giving out gifts with a chocolate snowman or chocolate reindeer. So let $X_1, \ldots , X_n$ be independent and Bernoulli-distributed with probability of success $p =\frac{1}{2}$. The event $\{X_j = 1\}$ means that in the $j$th present there is a chocolate reindeer. Let $a_n$ be the probability that at least 60% of the $n$ gifts distributed contains a chocolate reindeer.
(a) Calculate $a_{10}$ explicitly. Enter intermediate steps.
(b) Use the inequality $\displaystyle{P\left [\left |\frac{1}{n}\sum_{j=1}^nX_j-p\right |\geq \epsilon\right ]\leq \frac{1}{4n\epsilon^2}}$ from Bernoulli's weak law of large numbers, to estimate $a_{100}$. Does it hold $a_{100}<a_{10}$ ?
(c) Determine $\displaystyle{\lim_{n\rightarrow \infty}a_n}$.For (a) we have that \begin{equation*}P(a_{10}\geq 0.6)\Leftrightarrow P\left(\sum\limits_{i=1}^{10} X_i\geq 0.6\cdot 10 \right)\Leftrightarrow P\left(\frac{1}{10}\cdot \sum\limits_{i=1}^{10} X_i\geq 0.6\right)\end{equation*}
Do we have to use the weak law of large numbers $P[|\overline{X}-\mu|\geq \epsilon]\leq \frac{\sigma^2}{n\epsilon^2}$ ?
The expected value of $X_i$ is $\mu=E[X_i]=p=\frac{1}{2}$ and the variance is $\sigma^2=\text{Var}(X_i)=p\cdot (1-p)=\frac{1}{4}$. So we get $$P[|\overline{X}-\mu|\geq \epsilon]\leq \frac{\sigma^2}{n\epsilon^2} \Rightarrow P\left [\left |\overline{X}-\frac{1}{2}\right |\geq \epsilon\right ]\leq \frac{\frac{1}{4}}{10\cdot \epsilon^2}\Rightarrow P\left [\overline{X}\geq \epsilon+\frac{1}{2}\right ]\leq \frac{\frac{1}{4}}{10\cdot \epsilon^2}$$ For $\epsilon=0.1$ we get $$P\left [\overline{X}\geq 0.6\right ]\leq \frac{\frac{1}{4}}{10\cdot 0.1^2} \Rightarrow P\left [\overline{X}\geq 0.6\right ]\leq 2.5$$
This cannot be correct, can it?

:unsure:
 
Last edited by a moderator:
Physics news on Phys.org
Hi mathmari,

Great job rewriting the condition as $a_{10} = \text{Pr}\left(\displaystyle\sum_{i=1}^{10}X_{i}\geq 6\right).$ Your attempt to use Bernoulli's weak law of large numbers is also good. Note, though, that Bernoulli only gives an upper bound for $a_{n}$, so it will not allow us to calculate $a_{10}$ explicitly.

To proceed, expand your previous equation one step further to $$a_{10} = \text{Pr}\left(\sum_{i=1}^{10}X_{i}\geq 6\right) = \text{Pr}\left(\sum_{i=1}^{10}X_{i} = 6\right) + \text{Pr}\left(\sum_{i=1}^{10}X_{i} = 7\right) + \cdots + \text{Pr}\left(\sum_{i=1}^{10}X_{i} = 10\right).$$ To calculate each of the 5 terms on the right, consider using the Binomial Distribution, which calculates the probability of $k$ successes in a sequence of $n$ independent Bernoulli experiments.

Nice work so far. Feel free to let me know if you have any other questions.

Edit: Changed $\text{Pr}(a_{10}\geq0.6)$ to $a_{10}$ because $a_{n}$ is, by definition, the probability of at least 60% success in $n$ trials
 
Last edited:
GJA said:
Great job rewriting the condition as $a_{10} = \text{Pr}\left(\displaystyle\sum_{i=1}^{10}X_{i}\geq 6\right).$ Your attempt to use Bernoulli's weak law of large numbers is also good. Note, though, that Bernoulli only gives an upper bound for $a_{n}$, so it will not allow us to calculate $a_{10}$ explicitly.

To proceed, expand your previous equation one step further to $$a_{10} = \text{Pr}\left(\sum_{i=1}^{10}X_{i}\geq 6\right) = \text{Pr}\left(\sum_{i=1}^{10}X_{i} = 6\right) + \text{Pr}\left(\sum_{i=1}^{10}X_{i} = 7\right) + \cdots + \text{Pr}\left(\sum_{i=1}^{10}X_{i} = 10\right).$$ To calculate each of the 5 terms on the right, consider using the Binomial Distribution, which calculates the probability of $k$ successes in a sequence of $n$ independent Bernoulli experiments.

Nice work so far. Feel free to let me know if you have any other questions.

Edit: Changed $\text{Pr}(a_{10}\geq0.6)$ to $a_{10}$ because $a_{n}$ is, by definition, the probability of at least 60% success in $n$ trials

I got it! Now I am able to solve all the questions.. Thank you! (Sun)
 
Hello, I'm joining this forum to ask two questions which have nagged me for some time. They both are presumed obvious, yet don't make sense to me. Nobody will explain their positions, which is...uh...aka science. I also have a thread for the other question. But this one involves probability, known as the Monty Hall Problem. Please see any number of YouTube videos on this for an explanation, I'll leave it to them to explain it. I question the predicate of all those who answer this...