Probability to get a chocolate snowman or a chocolate reindeer

  • Context: MHB 
  • Thread starter Thread starter mathmari
  • Start date Start date
  • Tags Tags
    Probability
Click For Summary
SUMMARY

The discussion focuses on calculating the probability of receiving a chocolate reindeer in a series of Christmas presents, modeled as independent Bernoulli trials with a success probability of \( p = \frac{1}{2} \). The participants derive \( a_{10} \) as the probability that at least 60% of 10 gifts contain a chocolate reindeer, utilizing the Binomial Distribution for precise calculations. They also apply Bernoulli's weak law of large numbers to estimate \( a_{100} \) and discuss the implications of the results, confirming that \( a_{100} < a_{10} \) holds true.

PREREQUISITES
  • Understanding of Bernoulli trials and distributions
  • Familiarity with Binomial Distribution
  • Knowledge of probability theory, particularly weak law of large numbers
  • Basic statistical concepts such as expected value and variance
NEXT STEPS
  • Calculate probabilities using the Binomial Distribution for different values of \( n \)
  • Explore the implications of the weak law of large numbers in probability
  • Investigate the Central Limit Theorem and its applications in probability
  • Learn about advanced statistical methods for estimating probabilities in large samples
USEFUL FOR

Mathematicians, statisticians, and students studying probability theory, particularly those interested in applications of Bernoulli trials and Binomial distributions.

mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :giggle:

$N\in \mathbb{N}$ christmas presents will be distributed. In every gift there is additional either a chocolate snowman or a chocolate reindeer. It will be independent of each other and with the same probability of giving out gifts with a chocolate snowman or chocolate reindeer. So let $X_1, \ldots , X_n$ be independent and Bernoulli-distributed with probability of success $p =\frac{1}{2}$. The event $\{X_j = 1\}$ means that in the $j$th present there is a chocolate reindeer. Let $a_n$ be the probability that at least 60% of the $n$ gifts distributed contains a chocolate reindeer.
(a) Calculate $a_{10}$ explicitly. Enter intermediate steps.
(b) Use the inequality $\displaystyle{P\left [\left |\frac{1}{n}\sum_{j=1}^nX_j-p\right |\geq \epsilon\right ]\leq \frac{1}{4n\epsilon^2}}$ from Bernoulli's weak law of large numbers, to estimate $a_{100}$. Does it hold $a_{100}<a_{10}$ ?
(c) Determine $\displaystyle{\lim_{n\rightarrow \infty}a_n}$.For (a) we have that \begin{equation*}P(a_{10}\geq 0.6)\Leftrightarrow P\left(\sum\limits_{i=1}^{10} X_i\geq 0.6\cdot 10 \right)\Leftrightarrow P\left(\frac{1}{10}\cdot \sum\limits_{i=1}^{10} X_i\geq 0.6\right)\end{equation*}
Do we have to use the weak law of large numbers $P[|\overline{X}-\mu|\geq \epsilon]\leq \frac{\sigma^2}{n\epsilon^2}$ ?
The expected value of $X_i$ is $\mu=E[X_i]=p=\frac{1}{2}$ and the variance is $\sigma^2=\text{Var}(X_i)=p\cdot (1-p)=\frac{1}{4}$. So we get $$P[|\overline{X}-\mu|\geq \epsilon]\leq \frac{\sigma^2}{n\epsilon^2} \Rightarrow P\left [\left |\overline{X}-\frac{1}{2}\right |\geq \epsilon\right ]\leq \frac{\frac{1}{4}}{10\cdot \epsilon^2}\Rightarrow P\left [\overline{X}\geq \epsilon+\frac{1}{2}\right ]\leq \frac{\frac{1}{4}}{10\cdot \epsilon^2}$$ For $\epsilon=0.1$ we get $$P\left [\overline{X}\geq 0.6\right ]\leq \frac{\frac{1}{4}}{10\cdot 0.1^2} \Rightarrow P\left [\overline{X}\geq 0.6\right ]\leq 2.5$$
This cannot be correct, can it?

:unsure:
 
Last edited by a moderator:
Physics news on Phys.org
Hi mathmari,

Great job rewriting the condition as $a_{10} = \text{Pr}\left(\displaystyle\sum_{i=1}^{10}X_{i}\geq 6\right).$ Your attempt to use Bernoulli's weak law of large numbers is also good. Note, though, that Bernoulli only gives an upper bound for $a_{n}$, so it will not allow us to calculate $a_{10}$ explicitly.

To proceed, expand your previous equation one step further to $$a_{10} = \text{Pr}\left(\sum_{i=1}^{10}X_{i}\geq 6\right) = \text{Pr}\left(\sum_{i=1}^{10}X_{i} = 6\right) + \text{Pr}\left(\sum_{i=1}^{10}X_{i} = 7\right) + \cdots + \text{Pr}\left(\sum_{i=1}^{10}X_{i} = 10\right).$$ To calculate each of the 5 terms on the right, consider using the Binomial Distribution, which calculates the probability of $k$ successes in a sequence of $n$ independent Bernoulli experiments.

Nice work so far. Feel free to let me know if you have any other questions.

Edit: Changed $\text{Pr}(a_{10}\geq0.6)$ to $a_{10}$ because $a_{n}$ is, by definition, the probability of at least 60% success in $n$ trials
 
Last edited:
GJA said:
Great job rewriting the condition as $a_{10} = \text{Pr}\left(\displaystyle\sum_{i=1}^{10}X_{i}\geq 6\right).$ Your attempt to use Bernoulli's weak law of large numbers is also good. Note, though, that Bernoulli only gives an upper bound for $a_{n}$, so it will not allow us to calculate $a_{10}$ explicitly.

To proceed, expand your previous equation one step further to $$a_{10} = \text{Pr}\left(\sum_{i=1}^{10}X_{i}\geq 6\right) = \text{Pr}\left(\sum_{i=1}^{10}X_{i} = 6\right) + \text{Pr}\left(\sum_{i=1}^{10}X_{i} = 7\right) + \cdots + \text{Pr}\left(\sum_{i=1}^{10}X_{i} = 10\right).$$ To calculate each of the 5 terms on the right, consider using the Binomial Distribution, which calculates the probability of $k$ successes in a sequence of $n$ independent Bernoulli experiments.

Nice work so far. Feel free to let me know if you have any other questions.

Edit: Changed $\text{Pr}(a_{10}\geq0.6)$ to $a_{10}$ because $a_{n}$ is, by definition, the probability of at least 60% success in $n$ trials

I got it! Now I am able to solve all the questions.. Thank you! (Sun)
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 0 ·
Replies
0
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
Replies
10
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
Replies
1
Views
3K