Problem 11.1 from Ashcroft and Mermin's textbook

  • Thread starter Thread starter MathematicalPhysicist
  • Start date Start date
  • Tags Tags
    Textbook
MathematicalPhysicist
Science Advisor
Gold Member
Messages
4,662
Reaction score
372

Homework Statement


Let ##\vec{r}## locate a point just within the boundary of a primitive cell ##C_0## and ##\vec{r}'## another point infinitesimally displaced from ##\vec{r}## just outside the same boundary. The continuity equations for ##\psi(\vec{r})## are:
$$ (11.37) \lim_{r\to r'} [\psi(\vec{r})-\psi(\vec{r}')]=0$$
$$\lim_{r\to r'} [\nabla \psi(\vec{r})-\nabla \psi(\vec{r}')]=0$$

(a) Verify that any point ##\vec{r}## on the surface of a primitive cell is separated by some Bravais lattice vector ##\vec{R}## from another surface point and that the normals to the cell at ##\vec{r}## and ##\vec{r}+\vec{R}## are oppositely directed.
(b) Using the fact that ##\psi## can be chosen to have the Bloch form, show that the continuity conditions can equally well be written in terms of the values of ##\psi## entirely withing a primitive cell:
$$(11.38) \psi(\vec{r}) = e^{-i\vec{k}\cdot\vec{r}}\psi(\vec{r}+\vec{R})$$
$$\nabla \psi(\vec{r})= e^{-i\vec{k}\cdot \vec{R}}\nabla \psi(\vec{r}+\vec{R})$$
for pairs of points on the surface separated by direct lattice vectors ##\vec{R}##.
(c) Show that the only information in the second of equations (11.38) not already contained in the first is in the equation:
$$(11.39)\hat{n}(\vec{r})\cdot \nabla \psi(\vec{r})=-e^{-i\vec{k}\cdot \vec{R}}\hat{n}(\vec{r}+\vec{R})\cdot \nabla \psi(\vec{r}+\vec{R}),$$
where the vector ##\hat{n}## is normal to the surface of the cell.

Homework Equations

The Attempt at a Solution


I am quite overwhelmed by this question, and am not sure where to start.

I would appreciate some guidance as to how to solve this problem.

Thanks.
 
Last edited:
Physics news on Phys.org
I thought for assignment (b), that the Bloch condition is: ##\psi(r+R)=e^{ik\cdot R}\psi(r)## , for which we get the first idnetity of (11.38) (just multiply by the reciprocal of the exponent), but I don't see how is it related to the first continuity condition in (11.37).
 
Jump!

van Halen
 
To solve this, I first used the units to work out that a= m* a/m, i.e. t=z/λ. This would allow you to determine the time duration within an interval section by section and then add this to the previous ones to obtain the age of the respective layer. However, this would require a constant thickness per year for each interval. However, since this is most likely not the case, my next consideration was that the age must be the integral of a 1/λ(z) function, which I cannot model.
Back
Top