Problem about arithmetic progression

Augustus58
Messages
2
Reaction score
0
Hi,

can't solve following prob:
Let a, b and c be real numbers.
Given that a^2, b^2 and c^2 are in arithmetic progression show that 1 / (b + c), 1 / (c + a) and 1 / (a + b) are also in arithmetic progression.

From assumptions: b^2 = a^2 + nk and c^2 = b^2 + mk where k is some real number and n and m are whole numbers.

Then f.e. b^2 - a^2 = nk and 1 / (a + b) = (a - b) / (a^2 - b^2) =(b - a) / (nk).
Further 1 / (c + a) = (c - a) / ((k(m + n)) and 1 / (b + c) = (c - b) / (mk).

I tried to get something out from 1 / (b + c) - 1 / (c + a) and 1 / (c + a) - 1 / (a + b) related to definition of AP (f.e. pr and qr where p and q are whole numbers and r is real number).

Not solved yet :) Seems easy.. x)
 
Mathematics news on Phys.org
Welcome to PF!

This looks like a homework problem. PF uses a homework template where you write down the problem, state relevant formulas and then show some work. We can't help you much without some work shown.

To start things off:

Have you established that it is true?

Do you have a simple progression that illustrates the theorem ie values for a,b,c and m,n and k?
 
I wonder if it was meant that the numbers are meant to be consecutive members of an arithmetic progression, so m = b.

Work out the differences between 1 / (b + c) and 1 / (c + a) and also 1 / (c + a) and 1/(a+b). Make sure the fractions have the same divisors.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top