Problem n. 7 chapter 4 Eisberg Resnick "Quantum Physics"}
Show that the number of ##\alpha## particles scattered by an angle ##\Theta## or greater in Rutherford scattering is
$$\left (\frac{1}{4\pi\epsilon_0}\right)^{\!2}\pi I\rho t \left (\frac{zZe^2}{Mv^2}\right)^{\!2}\cot^2(\Theta/2)
$$
SOLUTION
starting from Rutherford formula $$dN=\left (\frac{1}{4\pi\epsilon_0}\right )^{\!2}\left(\frac{zZe^2}{2Mv^2}\right )^{\!2} I\rho t \;\frac{d\Omega}{\sin^4(\theta/2} \tag{4-7}
$$ with ##d\Omega=2\pi\sin(\Theta)d\Theta\ . \ \ ##Integrate ##(4{\text -}7)## from ##\Theta## to ##\pi##: $$
N=\left (\frac{1}{4\pi\epsilon_0}\right )^{\!2}\;\left (\frac{zZe^2}{Mv^2}\right )^{\!2}\;\frac{ \pi I\rho t}{2}\; \int_\Theta^\pi\frac{sin(\theta)d\theta}{\sin^4(\theta/2)}
$$ let ##u=\theta/2\space;\space d\theta=2du\space;\space\sin(\Theta)=2\sin(\Theta/2)\cos(\Theta/2)\ \ \Rightarrow ## $$
\begin{align*}
\int_\Theta^\pi\frac{sin(\theta)d\theta}{\sin^4(\theta/2)}&=
4\int_{\Theta/2}^{\pi/2}\frac{\sin u\cos u \, du}{\sin^4 u}\\ \ \\ &=\
\left . \frac{-2}{\sin^2(u)}\ \right |_{\Theta/2}^{\pi/2} \ = -2 \left (1-\frac {1}{\sin^2(\Theta/2)}\right )
= 2\cot^2(\Theta/2)
\end{align*}
$$so that $$N = \left (\frac{1}{4\pi\epsilon_0}\right )^{\!2}\;\left (\frac{zZe^2}{Mv^2}\right )^{\!2}\; \pi I\rho t\; \cot^2(\Theta/2)\ .$$as desired,

just practicing my ##\TeX## -- the answer was given away in #4 already
##\ ##