MHB Problem of Calculating Probabilities

  • Thread starter Thread starter PeterJ1
  • Start date Start date
  • Tags Tags
    Probabilities
AI Thread Summary
The discussion focuses on calculating the probability of a number N being a product of primes below its square root. The user initially estimates a 1:2 chance for N being divisible by 2, followed by a 1:6 chance for 3 if not divisible by 2, and a 1:15 chance for 5 if not divisible by 2 or 3. There is confusion around how to combine these probabilities and whether to use a sieve method or a table of prime reciprocals to account for irrelevant primes. The user seeks clarity on these calculations and expresses uncertainty about the approach to take.
PeterJ1
Messages
17
Reaction score
0
I hope this question is in the right place.

I'm trying to calculate probabilities and struggling. Hopefully someone can help.

Suppose I want to calculate the probability of N being a product of a prime below sqrt N.

N will have a 1:2 chance of being a product of 2.

If N is not a product of 2 then it will have a 1:6 chance of being a product of 3.

If N is not a product of 2,3 then it will have a 1:15 chance of being a product of 5.

And so on...

How would I arrive at combined probability for the primes up to sqrt N?

It could be a different calc. I could sieve out the products of each primes at each step and then calculate the probabilities for only the numbers that remain. So, for the divisor 2 the odds are 1:2. For 3 the odds are 1/3 but half the numbers have already been eliminated so really it is 1/6. Then I could use 1/3p as a simple estimate for each successive potential divisor, but would have no idea how to sum them.

Either way I cannot see an easy way to do it.

(I know the the PNT gives the probability of a number being prime, by the way, but this is not where I'm going.)

Thanks for any help with this. No doubt the solution looks easy for you guys.

Another way to do it seems to be use a table for the sum of the reciprocals of primes up to sqrt N, but I want to be able to deduct from this primes that are irrelevant. So, if I multiply 2,3,5, 7 and deduct 1 to give N, then I know these primes can be ignored. If I deduct the odds of these four primes being divisors then I can deduct this from the sum of the reciprocals up to N and get some sort of result. But if there are 100 possible divisors to deduct then I'm back where I started, trying to work out the sum of probabilities for these 100 possible divisors.

If I've asked a **** fool question then my apologies.
 
Last edited:
Mathematics news on Phys.org
Re: Problem of Calculating Probabilitiers

PeterJ said:
I hope this question is in the right place.

I'm trying to calculate probabilities and struggling. Hopefully someone can help.

Suppose I want to calculate the probability of N being a product of a prime below sqrt N.
Do you mean "having a prime factor below sqrt(N)"?

N will have a 1:2 chance of being a product of 2.
Do you mean "being a product of two primes" or do you mean "having 2 as prime factor"? In either case, how do you arrive at "a 1:2 chance"?

If N is not a product of 2 then it will have a 1:6 chance of being a product of 3.

If N is not a product of 2,3 then it will have a 1:15 chance of being a product of 5.

And so on...

How would I arrive at combined probability for the primes up to sqrt N?

It could be a different calc. I could sieve out the products of each primes at each step and then calculate the probabilities for only the numbers that remain. So, for the divisor 2 the odds are 1:2. For 3 the odds are 1/3 but half the numbers have already been eliminated so really it is 1/6. Then I could use 1/3p as a simple estimate for each successive potential divisor, but would have no idea how to sum them.

Either way I cannot see an easy way to do it.

(I know the the PNT gives the probability of a number being prime, by the way, but this is not where I'm going.)

Thanks for any help with this. No doubt the solution looks easy for you guys.

Another way to do it seems to be use a table for the sum of the reciprocals of primes up to sqrt N, but I want to be able to deduct from this primes that are irrelevant. So, if I multiply 2,3,5, 7 and deduct 1 to give N, then I know these primes can be ignored. If I deduct the odds of these four primes being divisors then I can deduct this from the sum of the reciprocals up to N and get some sort of result. But if there are 100 possible divisors to deduct then I'm back where I started, trying to work out the sum of probabilities for these 100 possible divisors.

If I've asked a **** fool question then my apologies.
 
Re: Problem of Calculating Probabilitiers

HallsofIvy said:
Do you mean "having a prime factor below sqrt(N)"?

Yep.

Do you mean "being a product of two primes" or do you mean "having 2 as prime factor"?

Having 2 as a factor.

In either case, how do you arrive at "a 1:2 chance"?

Er, one in every two numbers is divisible by 2.
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top