Problem with first-order nonlinear ordinary differential equation

bobey
Messages
29
Reaction score
0
i have problem to find the solution for : (3x3y+2xy+y3)+(x2+y2)dy/dx=0

i have tried the exact equation method :

(3x3y+2xy+y3)dx+(x2+y2)dy=0

thus M(x,y)=(3x3y+2xy+y3)

and N(x,y)= (x2+y2)

then deltaM/deltay=3x3+2x+3y2
and deltaN/deltax=2x

Since deltaM/deltay does not equal to deltaN/deltax, this imply that the equation is not exact

thus, finding/searching for integrating factor :

1. 1/N(deltaM/deltay-deltaN/deltax)=(3x3+3y3)/(3x3y+2xy+y3)

y cannot be eliminated . thus, this is a function of both x and y, not just x

2. 1/M(deltaN/deltax-deltaM/deltay)=(3x3+3y2)/(x2+y2)

x cannot be eliminated . thus, this is a function of both x and y, not just y


thus i cannot find the integrating factor in order to solve the DE. where I'm gone wrong? can somebody point it out? i guess may be in algebra...
 
Physics news on Phys.org
You are on right direction. But not all of ODEs have an easy integrating factor.
 
is there anyway for me to solve the de? please help me...
 
Thread 'Direction Fields and Isoclines'
I sketched the isoclines for $$ m=-1,0,1,2 $$. Since both $$ \frac{dy}{dx} $$ and $$ D_{y} \frac{dy}{dx} $$ are continuous on the square region R defined by $$ -4\leq x \leq 4, -4 \leq y \leq 4 $$ the existence and uniqueness theorem guarantees that if we pick a point in the interior that lies on an isocline there will be a unique differentiable function (solution) passing through that point. I understand that a solution exists but I unsure how to actually sketch it. For example, consider a...
Back
Top