MATLAB Problem with four system ode matlab

AI Thread Summary
The discussion centers on a user seeking assistance with solving a system of four ordinary differential equations (ODEs) in MATLAB. The user has attempted to use the 'dsolve' function but encounters a warning indicating that an explicit solution could not be found, resulting in an empty symbolic output. The user has substituted known variables into the equations and reformulated them for 'dsolve' but continues to receive the same warning. The request for help emphasizes the need for guidance on whether their approach is correct and how to successfully solve the equations. The conversation highlights the challenges faced by beginners in MATLAB when dealing with complex mathematical models and the importance of community support in troubleshooting coding issues.
a.gema
Messages
3
Reaction score
0
Hi,
I am a newbie to matlab
I have 4 equations ode to a system,

dxdt=-c*z*s')

dydt=((-1.021*(y^2))/(b+a))-(2.081015257+(6.936717523*x))/(b+a)+((p*r)-(p*j)/(b+a))-(((p^2)-2*p*(s^2)*c*z^2))/2*p')

dzdt=(((p^2)*r)-((p^2)*j))/(((S*x)+((p^2)*r))-((p^2)*j)/(b+a))-(((z^2)*c*(p^2))/(2*s*x))+(((z^2)*c*(s^2))/(2*s*x))-((z^2)*c*((p-s)^2)/2*s*(a+b))-(15.3*y^2)*(p/s)*(a+b)-(h/s*(a+b))')

drdt=(-m*(r^(((m+1)/m))*z*s))/(n^(((1/m))*v))-(n^(1/m))*k')

yes, I have replaced the variables that exist with the symbol
several variables that are known are abcspjknm
until recently I saw some tutorials and answers from this forum using the syntax 'dsolve'

more or less like this
u=dsolve('Dx=-c*z*s','Dy=((-1.021*(y^2))/(b+a))-(2.081015257+(6.936717523*x))/(b+a)+((p*r)-(p*j)/(b+a))-(((p^2)-2*p*(s^2)*c*z^2))/2*p','Dz=(((p^2)*r)-((p^2)*j))/(((S*x)+((p^2)*r))-((p^2)*j)/(b+a))-(((z^2)*c*(p^2))/(2*s*x))+(((z^2)*c*(s^2))/(2*s*x))-((z^2)*c*((p-s)^2)/2*s*(a+b))-(15.3*y^2)*(p/s)*(a+b)-(h/s*(a+b))','Dq=(-m*(r^(((m+1)/m))*z*s))/(n^(((1/m))*v))-(n^(1/m))*k','x(0)=0','y(0)=0','z(0)=0','r(0)=0')

but the ans is
Warning: Explicit solution could not be found.
> In dsolve at 120

u =

[ empty sym ]

i need clue to solve it,and tell me if iam in the right path.

regards
 
Physics news on Phys.org
-update-
i calculate all equation with known variabels,
and the output compose to dsolve syntax,more or less like this

[x,y,z,r]=dsolve('Dx = -(565939190652381375*z)/1152921504606846976','Dy = (16355638459336405*r)/864691128455135232 - (12667033077522942535719631836275*z^2)/166153499473114484112975882535043072 - (1021*y^2)/300 - (6508374677449415*x)/281474976710656 - 1082834104814639805/562949953421312','Dz = (4751877281217605*r)/147573952589676412928 - (31989963214599364608*x)/7545855875365085 - (25153697399630671875*z^2)/(772695641637384704*x) + (9223372036854775808*((4751877281217605*r)/147573952589676412928 - 1836715566709037/562949953421312))/(4527513525219051*x) - (3339821373396493901*y^2)/943231984420635625 - (2692950552872551939327614513538875*z^2)/1361129467683753853853498429727072845824 - 5448823127243492586999657831994653/4247939213560708089152819691520','Dr = - (4441490768239889031*r^(9811/9810)*z)/924173579960068096 - 2254787716421851/4503599627370496')

but the answer is sill same
any help would be greatly appreciated

regards
 

Similar threads

Back
Top