Product of Ideals makes no sense to me

  • Thread starter Thread starter Credulous
  • Start date Start date
  • Tags Tags
    Product
Credulous
Messages
9
Reaction score
1
The definition of the Product of ideals I and J is $$IJ = \{a_1b_1+a_2b_2 + ...+ a_nb_n | a_i \in I, b_j \in J, n \in \mathbb{N}\}$$.

But for say 4Z*2Z inside Z, how is the index "n" defined? I just don't get it. If you have $$2\mathbb{Z} = \{0, 2, -2,...\}$$ and $$4\mathbb{Z} = \{0, 4, -4, ...\}$$ that means $$4\mathbb{Z}*2\mathbb{Z} = \{0, 8, 16, 48, 80, ... \}$$ which is all well and good, but what if you defined 2Z = {0, -2, 2, -4, 4, ...}, what's stopping you? And then you get a completely different answer: $$4\mathbb{Z}*2\mathbb{Z} = \{0, -8, -16, ...\}$$ which is completely different from the first! Of course you could confuse things by further scrambling the order... but you get the point.

My question is: at least for the integers, what determines the "n" in the sum, because this current notation is seriously confusing me.
 
Physics news on Phys.org
The n isn't enumerating the elements of I and J in a particular order, it's just saying you can have any finite sum. For example for 4Z*2Z: every sum using one element from each of 4Z and 2Z is allowed. So 4*2, 16*6, -12*4 are all in 4Z*2. Every sum using two elements from each is allowed: 4*2+32*6, 4*4+40*14 are in 4Z*2Z. Etc.
 
So in essence, that would mean any combination of both sets, they would all contain factors of 8. So that would mean $$4\mathbb{Z}*2\mathbb{Z}=8\mathbb{Z}?$$or more generally: $$ m\mathbb{Z}*n\mathbb{Z}=mn\mathbb{Z}?$$
 
Yes, that's right. In general the product is contained in the intersection of the ideals - since each aibi is contained in the inersection, adding them up is also contained in the intersection, hence each element of I*J is contained in the intersection of I*J, but as we can see from this example you can get smaller ideals than the intersection by multiplying
 
its not your fault, there is a missing universal quantifier in that definition, it should say for ALL n.

basically take all products xy where x is in one ideal and y is in the other, and then take the smallest ideal containing all those products. that's where the sums come in.
 
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...

Similar threads

Back
Top