Product of Tangent Vectors & Affine Parameter

binbagsss
Messages
1,291
Reaction score
12
If ##\sigma## is an affine paramter, then the only freedom of choice we have to specify another affine parameter is ##a\sigma+b##, a,b constants. [1]

For the tangent vector, ##\xi^{a}=dx^{a}/du##, along some curve parameterized by ##u##

My book says that ' if ##\xi^{a}\xi_{a}\neq 0##, then by suitable affine parameterization we can arrange such that ##\xi^{a}\xi_{a}=\pm1##,

Question:

What does it mean by some suitable affine parameterization? so say if ##\sigma## is a affine parameter and we do not have ##\xi^{a}\xi_{a}=\pm1##, is it saying that we can use [1] and carefully choose ##a## and ##b## such that this is the case?

I've often seen proper time used such that ##\xi^{a}\xi_{a}=\pm1## is the case.
Why is this?

Or Is this part of the definition of proper time, are there any other 'known' parameters for which ##\xi^{a}\xi_{a}=\pm1## or is the affine parameter for which this holds unique?

Thanks in advance.
 
Physics news on Phys.org
Yes, the point is that if ##\xi^a \xi_b \neq 0##, then you can pick ##a## such that ##\xi^a \xi_a = \pm 1## (##b## does not really enter into it, it is just a translation along the curve). The point is that this parametrises the curve using the curve length as parameter. In Minkowski space, for time-like curves, this means parametrising the curve with the proper time.
 
Orodruin said:
Yes, the point is that if ##\xi^a \xi_b \neq 0##, then you can pick ##a## such that ##\xi^a \xi_a = \pm 1## (##b## does not really enter into it, it is just a translation along the curve). The point is that this parametrises the curve using the curve length as parameter. In Minkowski space, for time-like curves, this means parametrising the curve with the proper time.

Ok. So if i use an affine parameter ##\tau+b## I Still achieve ##\xi^a \xi_a =\pm 1##?

For a null geodesic we can't use ##\tau## as it is always zero.
However am I correct in thinking that the paramter ##\tau+b## would be plausible?

Thanks.
 
binbagsss said:
Ok. So if i use an affine parameter ##\tau+b## I Still achieve ##\xi^a \xi_a =\pm 1##?

For a null geodesic we can't use ##\tau## as it is always zero.

Yes, if you have ##\tau' = \tau + b##, you would get ##d\tau'/d\tau = 1## and thus ##dx^\mu/d\tau = dx^\mu/d\tau'##. It is just a change of what you call "proper time equals zero".
However am I correct in thinking that the paramter ##\tau+b## would be plausible?

No, it would not be. Just by the same argumentation as above. You would still be trying to parameterise with the proper time, just with a different definition of proper time equal to zero. It does not work for light-like curves. You can still find an affine parameter, but it cannot be based on curve length (i.e., proper time).
 
Orodruin said:
Yes, if you have ##\tau' = \tau + b##, you would get ##d\tau'/d\tau = 1## and thus ##dx^\mu/d\tau = dx^\mu/d\tau'##. It is just a change of what you call "proper time equals zero".

No, it would not be. Just by the same argumentation as above. You would still be trying to parameterise with the proper time, just with a different definition of proper time equal to zero. It does not work for light-like curves. You can still find an affine parameter, but it cannot be based on curve length (i.e., proper time).

Is a re-scale of prper time ok, so ##\lambda=a\tau##?
 
In this video I can see a person walking around lines of curvature on a sphere with an arrow strapped to his waist. His task is to keep the arrow pointed in the same direction How does he do this ? Does he use a reference point like the stars? (that only move very slowly) If that is how he keeps the arrow pointing in the same direction, is that equivalent to saying that he orients the arrow wrt the 3d space that the sphere is embedded in? So ,although one refers to intrinsic curvature...
ASSUMPTIONS 1. Two identical clocks A and B in the same inertial frame are stationary relative to each other a fixed distance L apart. Time passes at the same rate for both. 2. Both clocks are able to send/receive light signals and to write/read the send/receive times into signals. 3. The speed of light is anisotropic. METHOD 1. At time t[A1] and time t[B1], clock A sends a light signal to clock B. The clock B time is unknown to A. 2. Clock B receives the signal from A at time t[B2] and...
So, to calculate a proper time of a worldline in SR using an inertial frame is quite easy. But I struggled a bit using a "rotating frame metric" and now I'm not sure whether I'll do it right. Couls someone point me in the right direction? "What have you tried?" Well, trying to help truly absolute layppl with some variation of a "Circular Twin Paradox" not using an inertial frame of reference for whatevere reason. I thought it would be a bit of a challenge so I made a derivation or...

Similar threads

Back
Top