I Projectile angle (straight line) between 2 planets

thomasvt
Messages
7
Reaction score
0
TL;DR Summary
Some tips in solving a linear math problem to predict the shooting angle of a projectile from one planet in orbit to another in orbit around the same center.
I have a planetary system with planets orbitting a central star (circular orbits). I want to shoot a projectile P in a straight line from planet A to B and need to calculate the angle or vector to shoot the projectile P. I know the straight line of the projectile is physically not correct, but it will probably get a lot more complex if add realistic orbits for P.

I know the orbit of the source planet A doesn't matter, since it has no influence on the problem once P has departed. So, I need to find the point in time t1 where the position of P equals the position of B.

I think that 2D problems can be split in 2 1D problems, so let's focus on the X-coordinate:

* the projectile's position in time:
xp = xp0 + v.t (xp0 = initial X position of P at t0)
* the planet B's angular position:
α = α0 + ω .t (α0 initial angle around the sun at t0, ω is angular velocity)
* the planet B's position:
xb = cos(α) = cos(α0 + ω .t)

I also think, I have to solve for t where xp == xb:

xp0 + v.t = cos(α0 + ω .t)

But i have no idea how to get the t out of that cosine :)

Thanks for any suggestion!
 
Physics news on Phys.org
I just thought of the fact that I also don't know what the speed of P (v) is.. only that |v| is constant, but the angle and therefore its (x, y) are also unknown. damn :)
 
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...

Similar threads

Back
Top