Proof: concerning congruent modulo.

  • Thread starter Thread starter RichardParker
  • Start date Start date
  • Tags Tags
    Proof
RichardParker
Messages
23
Reaction score
0

Homework Statement



Suppose a, b, c, d ∈ Z and n ∈ N. If a ≡ b (mod n) and c ≡ d (mod n), then ac ≡ bd (mod n).

Homework Equations



Premise: a - b = n⋅x (1) and c - d = n⋅y (2), for some x, y ∈ Z.

Conclusion: ac - bd = n⋅z, where z ∈ Z and z = ___.

The Attempt at a Solution



Suppose a, b, c, d ∈ Z, a ≡ b (mod n) and c ≡ d (mod n), for which n ∈ N.
Hence n|(a-b) and n|(c-d). Further a - b = n⋅x and c - d = n⋅y, for some x, y ∈ Z.
...... I'm stuck.

I tried multiplying (1) and (2) but I got ac - bc - ab + bd = n^2 ⋅x ⋅y.
Addition won't work either. I think there must be a typographical error. Can you please tell if there is a solution to this problem?
 
Last edited:
Physics news on Phys.org
Instead of "a- b=nx" and "c- d=ny" use the equivalent "a= b+ nx" and "c= d+ ny". Now, what is ac?
 
Thanks! So silly I haven't seen that :bugeye:
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top