that should be
\mathbf{\nabla\cdot (u\times v)=v\cdot \nabla\times u-u\cdot \nabla\times v}
div (u cross v) = v dot curl (u)- u dot curl(v)
use
partial differentiation
\mathbf{\nabla\cdot (u\times v)=\nabla_u\cdot (u\times v)+\nabla_v \cdot (u\times v)}
div (u cross v)=div_u (u cross v)+div_v (u cross v)
recall
a dot b cross c=-b dot a cross c==c dot a cross b
thus
\mathbf{\nabla_u\cdot (u\times v)=v\cdot \nabla\times u}
\mathbf{\nabla_v\cdot (u\times v)=-u\cdot \nabla\times v}
div_u (u cross v)= v dot curl u
div_v (u cross v)=-u dot curl v
therefore
div (u cross v)=v dot curl (u)- u dot curl(v)
Hootenanny said:
The most straightforward way to prove your relation is a by direct computation.
Introducing an arbitrary coordinate system and a double sum is not very straight forward.
Calculus students hate epsilons and deltas. :)
vector calculus favorite
\mathbf{(a\times\nabla)\times b+a\nabla\cdot b=a\times(\nabla\times b)+(a\cdot\nabla)b}