1. Limited time only! Sign up for a free 30min personal tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Homework Help: Proof for exponential derivatives

  1. Dec 11, 2009 #1
    [tex]f(x) = 2^x \left \left[/tex]
    [tex]f(kx) = 2^(kx) \left \left[/tex]
    [tex]b = 2^k \left \left[/tex]
    [tex]b^x = 2^(kx) \left \left[/tex]
    [tex]b^x = f(kx)[/tex]
    [tex]\frac{d}{dx}(b^x) = \frac{d}{dx}(f(kx)) = \frac{d}{dx}(2^(kx)) (1)[/tex]
    [tex]\frac{d}{dx}(f(kx)) = k.f'(kx) (2)[/tex]
    I can't see how step (1) gets to step (2).
    Because I thought:
    [tex]\frac{d}{dx}(f(kx)) = k.\frac{d}{dx}(f(x))[/tex]
     
  2. jcsd
  3. Dec 11, 2009 #2
    I think it's:
    [tex]\frac{d}{d(kx)}(f(kx))*\frac{d}{dx}(kx) = k*f'(kx)[/tex]
     
  4. Dec 11, 2009 #3

    Mark44

    Staff: Mentor

    d/dx(f(u)) = d/du(f(u))*du/dx
     
  5. Dec 11, 2009 #4

    dextercioby

    User Avatar
    Science Advisor
    Homework Helper

    But isn't [tex] 2=e^{\ln 2} [/tex] ? Or am i missing something ?
     
  6. Dec 11, 2009 #5

    Mark44

    Staff: Mentor

    Yes, 2 = eln 2

    d/dx(f(kx)) = d/dx[(eln 2)kx] = ekxln 2 * k*ln2 = 2kx *k*ln2. The OP's formatting and organization made it a bit difficult to follow.
     
    Last edited: Dec 11, 2009
Share this great discussion with others via Reddit, Google+, Twitter, or Facebook