Proof: Inequality |a-c| <= |b-d|

  • Thread starter Thread starter nhrock3
  • Start date Start date
  • Tags Tags
    Proof
nhrock3
Messages
403
Reaction score
0
prof that if a=<b and c=<d is given than |a-c|=<|b-d|
from the sum of the given we get a+c=<b+d
that as far as i went
 
Physics news on Phys.org
hi nhrock3! :smile:

(have a ≤ :wink:)
nhrock3 said:
prof that if a=<b and c=<d is given than |a-c|=<|b-d|

that's obviously not true …

9 ≤ 10 and 1 ≤ 3

but 9 - 1 > 10 - 3
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top