Proof involving quantifiers and rationality/irrationality

  • Thread starter Thread starter Oxygenate
  • Start date Start date
  • Tags Tags
    Proof
Oxygenate
Messages
7
Reaction score
0
I have no idea how to begin this proof.

Homework Statement


Prove that for every rational number z, there exist irrational numbers x and y such that x + y = z.

The Attempt at a Solution


I can't think of even a way to start this proof...it's just quite obvious that the sum of two irrational numbers will equal a rational number, somehow... Please give me some pointers to start this proof with.
 
Physics news on Phys.org
"it's just quite obvious that the sum of two irrational numbers will equal a rational number" that, which is the statement converse of what you are asked, is not obvious and not true in general.

For the problem, you do know of a rational number A and an irrational x one that is less than it. Can you prove that (A - x) is also irrational?

Then you can do it for any pair of rationals.
 
Okay, so suppose A is irrational number. Then let x = 1/2z – a. And let y = 1/2z + a. Then x + y = z, and x and y are irrational.
 
Oxygenate said:
Okay, so suppose A is irrational number. Then let x = 1/2z – a. And let y = 1/2z + a. Then x + y = z, and x and y are irrational.

Yes, understand you mean x = z/2 – a. And let y = z/2 + a

But you have to prove explicitly that if z is irrational, so is z/2 + a etc.
 
Okay, so:

Let y = z - x. Then suppose y is rational, then m/n - x = a/b, in which case x = m/n - a/b = (mb - na) / (nb), which is a rational number. But this is a contradiction to the fact that x is an irrational number. Thus the statement (for every rational number z, there exist irrational numbers x and y such that x + y = z) is true.

I essentially just took your idea and developed it. Thanks for your help. :)
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top