Proof: $(\nabla f \times \nabla g)$ is Solenoidal

  • Thread starter Thread starter cristina89
  • Start date Start date
  • Tags Tags
    Proof
cristina89
Messages
29
Reaction score
0
Be f and g two differentiable scalar field. Proof that (\nablaf) x (\nablag) is solenoidal.
 
Physics news on Phys.org
cristina89 said:
Be f and g two differentiable scalar field. Proof that (\nablaf) x (\nablag) is solenoidal.

Show what you've done so far. What would you do to show a vector field is solenoidal?
 
Dick said:
Show what you've done so far. What would you do to show a vector field is solenoidal?

Well, to be solenoidal, I know that \nabla \cdot (\nablaf x \nablag) needs to be 0.

So,

\nabla \cdot (\nablaf x \nablag) = \nablag \cdot (\nabla x \nablaf) - \nablaf \cdot (\nabla x \nablag)

Right? But why is this equal to zero?
 
Last edited:
I like Serena said:
Welcome to PF, cristina89! :smile:

Did you know that ##\nabla \times \nabla f = 0## for any differential scalar field f?

It is one of the non-trivial identities of the del operator.
See for instance: http://en.wikipedia.org/wiki/Curl_(mathematics)#Identities

Thank you so much!
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top