Proof of |2^N x 2^N| = |2^N| with N the natural numbers

tomkoolen
Messages
39
Reaction score
1
Hello,

At my exam I had to proof the title of this topic. I now know that it can easily be done by making a bijection between the two, but I still want to know why I didn't receive any points for my answer, or better stated, if there is still a way to proof the statement from my work.

My work:
2^N > N (Cantor)
2^N x 2^N > N x N
Knowing that |N x N| = |N| it follows that |2^N x 2^N| = |2^N|.

I know that I didn't really give an explanation in that last step, but I still want to know if and how it's correct.
Thanks in advance!
 
Physics news on Phys.org
I don't see how this resembles a proof at all. You start by using Cantor ##|2^\mathbb{N}| > |\mathbb{N}|##, which is not relevant at all here. Then you give another irrelevant inequality, and finally you just state the result. You would not get any points for that if I were the grader.
 
I understand Cantor is not the way to go here but we were allowed to regard |N x N| = |N| as proven. I just want to know if there is any way to link the two?
 
For any infinite set ##X##, we have ##|X\times X| = |X|##. In particular, this is true for ##X= 2^{\mathbb{N}}##. I don't see how ##|\mathbb{N}\times \mathbb{N}| = |\mathbb{N}|## is really relevant here.
 
However, you can work with the disjoint union ##\mathbb{N} + \mathbb{N} := (\mathbb{N}\times \{0\})\cup (\mathbb{N}\times \{1\})##. We have ##|\mathbb{N}+\mathbb{N}| = |\mathbb{N}|## (this requires a proof). We can then say:
|2^\mathbb{N}\times 2^\mathbb{N} | = |2^{\mathbb{N}+\mathbb{N}}| = |2^{\mathbb{N}}|
But both of the two equalities also require a proof.
 
Hi all, I've been a roulette player for more than 10 years (although I took time off here and there) and it's only now that I'm trying to understand the physics of the game. Basically my strategy in roulette is to divide the wheel roughly into two halves (let's call them A and B). My theory is that in roulette there will invariably be variance. In other words, if A comes up 5 times in a row, B will be due to come up soon. However I have been proven wrong many times, and I have seen some...
Thread 'Detail of Diagonalization Lemma'
The following is more or less taken from page 6 of C. Smorynski's "Self-Reference and Modal Logic". (Springer, 1985) (I couldn't get raised brackets to indicate codification (Gödel numbering), so I use a box. The overline is assigning a name. The detail I would like clarification on is in the second step in the last line, where we have an m-overlined, and we substitute the expression for m. Are we saying that the name of a coded term is the same as the coded term? Thanks in advance.
Back
Top