Proof of Exponential Interarrival times times

  • Thread starter Thread starter mmehdi
  • Start date Start date
  • Tags Tags
    Exponential Proof
mmehdi
Messages
6
Reaction score
0
The proof that poisson process has exponential interarrival time is common place. The proof which i am trying to do is that, exponential interarrival times will always be poisson process, its like the reverse of the earlier proof. Could you help me with that.
 
Physics news on Phys.org
The fundamental assumption of the Poisson distribution is that, for some very small time interval, the probability of a single arrival is a constant and the probability of more than one arrival in that time interval is so small it can be ignored. The proof that that hypothesis leads to the Poisson distribution is given in any good probability text that discusses the Poison distribution. You can also treat that as a differential equations problem (the rate of change of total arrivals is constant) that has an exponential function as solution.
 
I am not sure if I truly follow you. The proof that you can only have one arrival in one interval and the probability of getting two arrival is zero, is done through taylor series expansion. But how does it show that the exponenttial interarrival shall always satisfy the poisson properties.

What I tried is the total time, or waiting time let's say for the second arrival is Gamma Distribution. So if we integrate the gamma distribution it shall give us a poisson distribution. However the integration is winding, but it does yield the poisson distribution at the end.
 
Namaste & G'day Postulate: A strongly-knit team wins on average over a less knit one Fundamentals: - Two teams face off with 4 players each - A polo team consists of players that each have assigned to them a measure of their ability (called a "Handicap" - 10 is highest, -2 lowest) I attempted to measure close-knitness of a team in terms of standard deviation (SD) of handicaps of the players. Failure: It turns out that, more often than, a team with a higher SD wins. In my language, that...
Hi all, I've been a roulette player for more than 10 years (although I took time off here and there) and it's only now that I'm trying to understand the physics of the game. Basically my strategy in roulette is to divide the wheel roughly into two halves (let's call them A and B). My theory is that in roulette there will invariably be variance. In other words, if A comes up 5 times in a row, B will be due to come up soon. However I have been proven wrong many times, and I have seen some...

Similar threads

Back
Top