Proof of Identity: $\phi(P+Q)=\int_{\partial D}\phi \nabla \phi \cdot \n \ds$

  • Thread starter Thread starter Tony11235
  • Start date Start date
  • Tags Tags
    Identity Proof
Tony11235
Messages
254
Reaction score
0
Prove the identity \int_{\partial D}\phi \nabla \phi \cdot \n \ds = \int \int_{D} (\phi \nabla^2 \phi + \nabla \phi \cdot \nabla \phi) \dA
Can I just let \phi be equal to P + Q, substitute into the left side, and try to derive the right side? This is a weird looking identity by the way.
 
Last edited:
Physics news on Phys.org
Its actually quite easy, without any vector calculus needed.
(f*gx)x= fx*gx + f*gxx

if you sum these up for y and z derivatives, you will get

Div[f*del(g)] = del(f) dot del(g) + f*del^2(g)

integrate both sides and use divergence theorem.

I apologize for having to write div for divergence, dot for dot product and del for the del operator, but i don't know how to do those fancy fonts.
 
So basically let F be equal to \phi \nabla \phi, then \nabla \cdot F is equal to (\phi \nabla^2 \phi + \nabla \phi \cdot \nabla \phi). What do you know it's the divergence theorem!
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top