bjgawp
- 84
- 0
Edit: Whoops. Was intending to post this in the homework forum but accidentally didn't...
Question: If \lim_{x \to a} f(x) = L and \lim_{x \to a} g(x) = M, then \lim_{x \to a} (f(x)g(x)) = LM.
Proof from James Stewarts':
Question: If \lim_{x \to a} f(x) = L and \lim_{x \to a} g(x) = M, then \lim_{x \to a} (f(x)g(x)) = LM.
Proof from James Stewarts':
Problem: I don't exactly how they made the statements with the *[/color]s. Where did these inequalities come from and how can they be asserted? Also, I'm kind of iffy on why we need three \deltas ... Any help would be appreciated!Let \epsilon > 0 . We want to find \delta > 0 such that |f(x)g(x) - LM| whenever 0 < |x - a| < \delta.
\left| f(x)g(x) - LM \right|
= \left| f(x)g(x) - Lg(x) + Lg(x) - LM \right|
= \left|\left[f(x) - L\right]g(x) + L\left[g(x) - M\right]\right|
\leq \left|\left[f(x) - L\right]\left(g(x)\right)\right| + \left|\left(L\right)\left[g(x) - M\right]\right| (Triangle inequality)
= \left|f(x) - L\right|\left|g(x)\right| + \left|L\right|\left|g(x) - M\right|
We want to make each of these terms less than \frac{\epsilon}{2}.
Since \lim_{x \to a} g(x) = M, there is a number \delta_{1} > 0 such that: |g(x) - M| < \frac{\epsilon}{2\left(1 + |L|\right)}*[/color] whenever 0 < |x - a| < \delta_{1}.
Also, there is \delta_{2}>0 such that if 0 < |x - a| < \delta_{2}, then |g(x) - M| < 1 and therefore:
\left|g(x)\right| = \left|g(x) - M + M\right| \hspace{4mm} \leq \hspace{4mm} \left|g(x) - M\right| + \left|M\right| \hspace{4mm}< \hspace{4mm} 1 + \left|M\right|
Since \lim_{x \to a}f(x) = L, there is a number \delta_{3}>0 such that: \left|f(x) - L\right|<\frac{\epsilon}{2\left(1+|M|\right)}*[/color] whenever 0 < |x - a| < \delta_{3}.
Let \delta = min\left\{\delta_{1},\delta_{2},\delta_{3}\right\}. If 0 < |x - a| < \delta.
Then we have 0 < |x-a| <\delta_{1}, \hspace{4mm} 0 < | x-a| < \delta_{2}, \hspace{4mm} 0 <|x-a|<\delta_{3}
so we can combine the inequalities to obtain:
\left|f(x)g(x) - LM\right|
\leq \hspace{4mm}\left|f(x)-L\right| \left|g(x)\right| \hspace{4mm}+ \hspace{4mm}\left|L\right|\left|g(x)-M\right|
= \frac{\epsilon}{2\left(1 + |M|\right)} \left(1 + |M|\right) + |L| \frac{\epsilon}{2\left(1 + |L|\right)}
< \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon
Therefore, \lim_{x \to a} f(x)g(x) = LM