Proof of Limit of Bounded Sequence: 2an <= an+1 + an-1

  • Thread starter Thread starter PvtBillPilgrim3
  • Start date Start date
  • Tags Tags
    Analysis
PvtBillPilgrim3
Messages
5
Reaction score
0
Let (an) be a bounded sequence. If 2an <= an+1 + an−1, prove that
limit n to infinity of (an+1 − an) = 0.


This question is on my exam review sheet for an elementary analysis class and I'm not really sure where to start. Could someone just give me a hint or something? I'm pretty sure an is decreasing and therefore convergent since it's bounded. But I'm not sure how to conclude this or arrive at the final conclusion.
 
Physics news on Phys.org
Use your inequality to show a_(n+1)-a_n is an increasing sequence and is bounded. So it has a limit. Can the limit be nonzero?
 
Ok, that makes sense but what makes the limit have to be zero? I guess I don't know how to answer your question. Why can't it be non-zero?

If an is bounded, does that mean an+1 - an is bounded also? How do I show it's bounded?
 
Last edited:
If a_n is bounded, then A<=a_n,a_(n+1)<=B for some numbers A and B. Can you show a_(n+1)-a_n is bounded? If a_(n+1)-a_n approaches a nonzero limit, can a_n be bounded?
 
Last edited:
OK. I think I figured it out mostly, but I still don't see how the given inequality shows that (an+1 − an) is an increasing sequence. It holds when I take examples, but why for an arbitrary bounded one?
 
Rearrange your inequality to put a_(n+1)-a_n on one side. What's on the other side?
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top