mynameisfunk
- 122
- 0
ok i am stumped on a proof i am trying to construct of a metric:
d(x,y)=\frac{|x-y|}{1+|x-y|}
so, out of the 3 requirements to be a metric, the first 2 are trivial and I am just working on proving the triangle inequality...
i need \frac{|x-y|}{1+|x-y|} \leq \frac{|x-z|}{1+|x-z|} + \frac{|z-y|}{1+|z-y|}
p2(1+q+r+qr) \leq q2(1+p+r+pr)+r2(1+p+q+pq)
can i now go to:
p(1+q+r+qr) \leq q(1+p+r+pr)+r(1+p+q+pq) ?
d(x,y)=\frac{|x-y|}{1+|x-y|}
so, out of the 3 requirements to be a metric, the first 2 are trivial and I am just working on proving the triangle inequality...
i need \frac{|x-y|}{1+|x-y|} \leq \frac{|x-z|}{1+|x-z|} + \frac{|z-y|}{1+|z-y|}
p2(1+q+r+qr) \leq q2(1+p+r+pr)+r2(1+p+q+pq)
can i now go to:
p(1+q+r+qr) \leq q(1+p+r+pr)+r(1+p+q+pq) ?