Proof of the triangle inequality

dobedobedo
Messages
28
Reaction score
0
I am familiar with the proof for the following variant of the triangle inequality:

|x+y| ≤ |x|+|y|

However, I do not understand the process of proving that there is an equivalent inequality for an arbitrary number of terms, in the following fashion:

|x_1+x_2+...+x_n| ≤ |x_1|+|x_2|+...+|x_n|

How do I prove this? Please write down the solution step by step. I know that the Cauchy-Schwartz inequality is used for proving this in the case where n=2, but is it possible to use it for any n?

Thank you,
Dobedobedo!
 
Mathematics news on Phys.org
|x+y+z| =|(x+y)+z| ≤ |x+y|+|z| ≤ |x|+|y|+|z| ...
 
Haha okay. I get the way of solving it thanks, but that answer is just lazy haha. I guess induction should be use somehow? Okay. I'll try to figure it out.
 
Sorry if it is not too formal; I thought I'd give you the idea. Well..., yes, you got me,

I was being lazy too.

But, yes,you could do an induction on the number of terms:

Assume |x1+x2+...+xn|≤|x1|+

|x2|+...+|xn|.

How does it follow from above that

|x1+x2+...+xn+1|≤|x1|+

|x2|+...+|xn+1| ?
 
Last edited:
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top