SpaceDomain
- 58
- 0
Homework Statement
Using the definition of the z-transform, show that if X(z) is the z-transform of x(n) = x_{R}(n) +jx_{I}(n), then:
Z\{x^{*}(n)\}=X^{*}(z^{*})
Homework Equations
z-tranform definition:
Z\{x(n)\}=X(z)=\sum x(n)z^{-n}
The Attempt at a Solution
x(n) = x_{R}(n) + jx_{I}(n) \Longrightarrow x^{*}(n) = x_{R}(n) - jx_{I}(n)
Z\{x^{*}(n)\}=Z\{x_{R}(n) - jx_{I}(n)\}=\sum x^{*}(n)z^{-n}
=\sum [x_{R}(n) - jx_{I}(n)]z^{-n}
=\sum [x_{R}(n)z^{-n} - jx_{I}(n)z^{-n}]=\sum x_{R}(n)z^{-n} - j \sum x_{I}(n)z^{-n}
Last edited: