Proof question: the sum of the reciprocals of the primes diverges

  • Thread starter Thread starter drjohnsonn
  • Start date Start date
  • Tags Tags
    Primes Proof Sum
drjohnsonn
Messages
11
Reaction score
1
The gist of the approach I took is that∑1/p = log(e^∑1/p) = log(∏e^1/p) and logx→ ∞ as x→∞.
Proof outline: let ∑1/p = s(x). (...SO I can write this easily on tablet) and note that e^s(x) diverges since e^1/p > 1 for any p and the infinite product where every term exceeds 1 is divergent. Then loge^s(x) diverges as logs as x→∞ would. Thus, since log(e^s(x)= s(x), the sum is found to be divergent
 
Last edited:
Physics news on Phys.org
drjohnsonn said:
the infinite product where every term exceeds 1 is divergent.

That's not right.
 
drjohnsonn said:
the infinite product where every term exceeds 1 is divergent.
That's obviously incorrect since ##\Pi_{n=1}^{\infty} \exp(2^{-n}) = e##.
 
Wow that isvrry wrong indeed. Thank you
 
Taking the advice i was initally given - by starting with a product represation of the harmonic series has cerainly panned out better. i keptthinking "my method doesn't seem right somewhere..."
 
Last edited:
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top