thedoctor818
- 1
- 0
Homework Statement
Let S and T be nonempty subsets of \mathbb{R} \backepsilon s \leq t \forall s \in S \wedge t \in T. A) Observe that S is bounded above and that T is bounded below. B) Prove that sup S = inf T.
Homework Equations
The Attempt at a Solution
Let s_0 = sup S. \text{ Then } s \leq s_o \forall s \in S \wedge s \leq t \forall s \in S \Rightarrow s_0 \leq t.
Let t_0 = inf S. \text{ Then } t_0 \leq t \forall t \in T \wedge s \leq t \forall t \in T \Rightarrow s \leq t_0.