Proof Using Def. of Groups and Def. of Subgroups

  • Thread starter Thread starter wubie
  • Start date Start date
  • Tags Tags
    Groups Proof
AI Thread Summary
The discussion revolves around proving that the intersection of two subgroups H and K of a group G is also a subgroup of G. To establish this, one must verify that the intersection satisfies the subgroup properties: closure under the group operation and the existence of inverses. An example is requested to illustrate that the union of two subgroups may not be a subgroup, specifically using subgroups of the integers under addition. Participants suggest focusing on filling in the proof structure to clarify the reasoning behind the intersection being a subgroup. Overall, the conversation emphasizes understanding subgroup definitions and properties to construct valid proofs.
wubie
Hello,

This is my question:

(i) Let H and K be subgroups of a group G. Prove that the intersection of H and K is also a subgroup of G.

(ii) Give an example, using suitable sugroups of the goup of integers with the operation addition, (Z,+), to show that if H and K are subgroups of a group G, then the union of U and K need not be a subgroup of G.


I figure that if I can do (i) then (ii) will follow. But I am unsure of how to do (i). (In previous assignments I did proofs on subsets, unions, intersections of sets but I did poorly on them.)

I posted a previous question stating the four properties of a set of which all must be satisfied to be defined as group. From my understanding of subgroups, only two of these properties must be satisfied to define a subgroup of a group.

Definition: A subgroup of a group G (G,o) is any nonempty subset H of G such that H is a group with the same operation, o. To check that H is a subgroup, verify the following:

S1: If x and y are elements of H, then x o y is an element of H.
s2: If x is an element of H, the the inverse is an element of H.


If H and K are subgroups then they must satisfy the aforementioned properties. And as a consequence if S1 and S2 are satisfied, and because H and K are elements of G, the remaining 2 properties that define a group are satisfied as well.

I also know that by definition, H intersects K iff some of the elements of K are also elements of H.

But I am unsure of where to go from here, much less construct a proof that proves that the intersection of H and K is also a subgroup of G.

(After typing this I think that I have some idea so I might be back later to submit more ideas/work regarding this question).

Any help to steer me in the right direction would be appreciated. Thankyou.
 
Physics news on Phys.org
Your problem is Proposition 2.1.2 at the following website. The complete proof is there, so you may want to only read a line at a time for a clue.

http://www.maths.lancs.ac.uk/dept/coursenotes/m225ril99/chapter2/chap2/node2.html
 
Last edited by a moderator:
Thanks Tom. I might get back to you if I don't understand a step or few. Or for some clarification of some concept. That happens from time to time you know.

Thanks again.
 
I also know that by definition, H intersects K iff some of the elements of K are also elements of H.

But it's not just a matter of WHETHER they intersect but WHAT the intersection is.


To check that H is a subgroup, verify the following:

S1: If x and y are elements of H, then x o y is an element of H.
s2: If x is an element of H, the the inverse is an element of H.

Yes, exactly. Suppose x and y are members of H intersect K.
Then x and y are members of ____ and, since ____ is a subgroup, x+y is in ____.

Since x and y are members of H intersect K, they also are members of ___ which is a subgroup. Therefore, x+y is a member of _____.

Since x+y is in ___ and ___, it is in ___ intersect ___.

Fill in the blanks!:smile:
 
I multiplied the values first without the error limit. Got 19.38. rounded it off to 2 significant figures since the given data has 2 significant figures. So = 19. For error I used the above formula. It comes out about 1.48. Now my question is. Should I write the answer as 19±1.5 (rounding 1.48 to 2 significant figures) OR should I write it as 19±1. So in short, should the error have same number of significant figures as the mean value or should it have the same number of decimal places as...
Thread 'A cylinder connected to a hanging mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top