Properties and Elements of SO(4) Group in 4 Dimensions

jobinjosen
Messages
3
Reaction score
0
What are the properties of SO(4) group? , How this acts as a rotator in 4 dimensions?, What are the elements of Rotation matrix in a specific dimension among four dimensions?
 
Physics news on Phys.org
I've been waiting for some kind of answer for this post too. I cannot answer the OP, but I'll throw more questions :smile:

When a rotation is carried out in three dimensions, there is an axis of rotation, that is a one dimensional subspace of the three dimensional space, and the rotation is in fact just a two dimensional rotation in the orthogonal complement of this axis. In analogy with this I might guess, that in four dimensions the one dimensional axis is replaced by a two dimensional subspace, that is then some kind of "axis" of rotation. Is this correct?

In analogy with SO(3), I might guess that SO(4)=\textrm{exp}(\mathfrak{so}(4)), where \mathfrak{so}(4) consists of those 4x4 matrices that are antisymmetric (satisty X^T=-X). However, these matrices depend only on 6 real variables, which is not enough to define two four dimensional vectors that would span the "axis space", so it seems I'm guessing something wrong.
 
jostpuur said:
In analogy with SO(3), I might guess that SO(4)=\textrm{exp}(\mathfrak{so}(4)), where \mathfrak{so}(4) consists of those 4x4 matrices that are antisymmetric (satisty X^T=-X).

This is true of SO(n) and so(n).

However, these matrices depend only on 6 real variables, which is not enough to define two four dimensional vectors that would span the "axis space", so it seems I'm guessing something wrong.

https://www.physicsforums.com/showpost.php?p=1110359&postcount=20 may be of interest to both you and jobinjosen.
 
Here are some more points regarding SO(4) group.

In SO(3) rotations, generator of rotation are components of Angular momentum (Lx, Ly, Lz) for rotation w.r.t corresponding axis.

Now, In SO(4), what are the generators of rotation?

They are components of Angular momentum (Lx, Ly, Lz) and components of Laplace Runge Lenz (LRL) vector (Ax, Ay, Az). Constancy of this LRL vector creates aditional symmetry. Am I correct?
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
If we release an electron around a positively charged sphere, the initial state of electron is a linear combination of Hydrogen-like states. According to quantum mechanics, evolution of time would not change this initial state because the potential is time independent. However, classically we expect the electron to collide with the sphere. So, it seems that the quantum and classics predict different behaviours!

Similar threads

Replies
9
Views
2K
Replies
7
Views
2K
Replies
3
Views
2K
Replies
7
Views
2K
Replies
1
Views
968
Replies
29
Views
3K
Replies
0
Views
1K
Back
Top