Properties, General Results on of Aut(G) ?

WWGD
Science Advisor
Homework Helper
Messages
7,679
Reaction score
12,442
Hi, just curious: I saw a result that for the multiplicative group G:= {1,-1, i, -i } , "every

homomorphism ## h: G \rightarrow G ## is of the form ## z \rightarrow z^k ## for some

##k \in \mathbb Z ##. I can show this is true by considering the image of a generator, but

I was wondering if there are general results about the automorphism groups that may also

apply. Any ideas?
 
Physics news on Phys.org
I think this has to see with the fact that this G is cyclic. Then once we know the value of ## z^k## for some generator, we know the
whole homomorphism. But that is not a proof.
 
WWGD said:
I think this has to see with the fact that this G is cyclic. Then once we know the value of ## z^k## for some generator, we know the
whole homomorphism. But that is not a proof.

I think it is a proof. What do you think is missing? For a cyclic group you are correct that the automorphism is determined by the image of a generator.
 
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...

Similar threads

Back
Top