- #1

- 374

- 0

Compare with ac, why dc decreases as it is transferred over long distances?

Thank you.

You are using an out of date browser. It may not display this or other websites correctly.

You should upgrade or use an alternative browser.

You should upgrade or use an alternative browser.

- Thread starter Outrageous
- Start date

- #1

- 374

- 0

Compare with ac, why dc decreases as it is transferred over long distances?

Thank you.

- #2

Simon Bridge

Science Advisor

Homework Helper

- 17,873

- 1,655

- #3

- 20

- 0

In DC, the pressure is constant in one direction. Electrons are forced to push the other one and keep moving in one direction.

In AC, electrons are pushed forward and then backward, forward and backward and so on.

- #4

- 374

- 0

- #5

- 20

- 0

in the first half cycle, when an electron is pushed forward, it pushes electrons next to it, that pushes the one next to it and so on all along the conductor. then in the 2nd half cycle, they are pushed back from the other end, because the polarity is reversed.

- #6

Simon Bridge

Science Advisor

Homework Helper

- 17,873

- 1,655

Imagine the train set again? How does the motion of the train get from the engine or your hand pushing it to the other side of the track?

Electrons basically travel at order cm/s down a wire - yet the light goes on right away when you flick the switch. This is because the electrons push on each other - they are linked like the carriages in the train. The electrons making the light glow were already in the filament when you flicked the switch.

A more common analogy is water in a pipe.... water fills the pipe, so moving the water at one end of the pipe moves the other water at the other end of the pipe.

- #7

- 374

- 0

But now due to the lost of power during transmission of dc over long distance, alternating current is used.

So in power station, alternating current is produced then is also need to be transferred through cable and telegraph pole so as to deliver electric to a region , am I right?

Then my question is Since alternating current is not a steady constant current, how does it transfer? I mean now the telegraph pole has 2 sides , and assume it is 1Hz for ac, then every one second there will be current flow out from both side of telegraph pole? Am I correct?

Then along the wire of the telegraph pole ,the current flowing will be half a wave ?

I just want to know why power lost over long distance for dc but not ac?

- #8

Simon Bridge

Science Advisor

Homework Helper

- 17,873

- 1,655

It is the energy that is transferred - the power station pulls and pushes on the electrons in the wire. That makes all the electrons in the wire go back and forth. If you hook some appliance up to the wire, then it is harder for the electrons to get pushed and pulled (because they have to go through the appliance as well) and so the power company has to supply more energy into the push and pull. That's what the meter is reading - how much extra work the power company has to do to push and pull electrons through your house/flat/apartment/whatever.Then my question is Since alternating current is not a steady constant current, how does it transfer?

Again think of the train - the engine is in one place pushing and pulling the carriages - but the energy goes through the links to all the carriages even when all the engine does is go backwards and forwards.

Another way: think again of water in a pipe flowing in a circle, with an appliance being, in this case, a water-wheel, somewhere in the path.

You can see that turning on the pump will make wheels turn anywhere in the loop: if the pump alternates forward and backwards them the wheels will turn forwards and backwards. The more wheels, the harder the pump making the flow has to work.

The power transferred in this way is a full wave.

In some devices, like a light bulb, the direction of the current does not matter. The filament glows whether the electrons go forward or backward through it.

For some it does matter - so the current has to be adjusted so the backwards part goes by a different path to the forwards part and the whole thing smoothed out. The process is called "rectification" which can be "half-wave" (where the backwards part is just dumped) and "full wave" (where you use both parts of the cycle).

The details of power transmission is a big topic. Read also:

Wikipedia on Power Transmission

AC Circuits/Power: basics

AC Circuits - more advanced

Youtube:

... the associated vids explain other aspects of AC that you have asked about.

Last edited by a moderator:

- #9

NascentOxygen

Staff Emeritus

Science Advisor

- 9,244

- 1,072

Hi Outrageous. Unfortunately, power is lost over long distances for both DC and AC. The cables always have resistance, and power is lost as heat.I just want to know why power lost over long distance for dc but not ac?

Electricity authorities prefer to use high voltages when transferring lots of power, because for a fixed power, a higher voltage means the current is smaller, and in transmission cables the power loss (= I²R ) is smaller if I is smaller.

A big advantage of AC is that at the destination a transformer can be used to restore the voltage to what it should be, exactly compensating for any voltage drop in the wires. (This is not

- #10

- 374

- 0

Electricity authorities prefer to use high voltages when transferring lots of power, because for a fixed power, a higher voltage means the current is smaller, and in transmission cables the power loss (= I²R ) is smaller if I is smaller.

Why higher voltage will be lower current? In our transmission substation, if we increase the voltage, there are more joule per coulomb supplied to the wire along the substation, then V=IR, since the resistance is constant, then the current should be increased.

- #11

- #12

NascentOxygen

Staff Emeritus

Science Advisor

- 9,244

- 1,072

A power station generates a fixed power. To transmit this fixed amount of power, if you double the voltage the available current halves.Why higher voltage will be lower current? In our transmission substation, if we increase the voltage, there are more joule per coulomb supplied to the wire along the substation, then V=IR, since the resistance is constant, then the current should be increased.

With the line current halved, the I

- #13

- 374

- 0

- #14

Simon Bridge

Science Advisor

Homework Helper

- 17,873

- 1,655

Yes they will ... P=IV and V=IR ... the P equation limits what I and V is available.

For fixed resistance R, and power use P, then, from Ohms' Law,

the current through R is: $$I=\sqrt{\frac{P}{R}}$$... and the voltage across R is $$V=\sqrt{PR}$$... if the company wants to put a higher voltage on the line, then P=IV means the max available current must be lower.

Did you read through the links I supplied yet?

- #15

Bobbywhy

Gold Member

- 1,726

- 50

Compare with ac, why dc decreases as it is transferred over long distances?

Thank you.

Outrageous, Will you please take the time to read and study this historical Wiki article? It should answer all your questions.

http://en.wikipedia.org/wiki/War_of_Currents

Cheers,

Bobbywhy

Share: