Properties of symmetric magnetic field around ##Z## axis (cylinder)

AI Thread Summary
A symmetric magnetic field around the Z-axis implies that the field is dependent solely on the radial distance (ρ) and possibly the axial position (z), but not on the azimuthal angle (φ). This cylindrical symmetry means that while the magnetic field can have a component in the φ direction, its derivative with respect to φ will always be zero, indicating no variation in that direction. An example of a non-zero magnetic field in the φ direction is the field produced by an infinitely long current-carrying wire along the z-axis, which is given by B = (μ₀/2πr)Iâφ. Conversely, an electric field with cylindrical symmetry can exist in the ρ direction, such as that from an infinitely long charged wire. Understanding these properties is crucial for analyzing magnetic fields in cylindrical coordinates.
sagigever
Messages
25
Reaction score
4
I am trying to understand but without a succes why symmetric magnetic field around ##Z## axis make that ##\hat \phi## magnetic field is zero
I can't understand why it physically happens and also how can I derive it mathematically?
What does the word symmetric means when talking about magnetic field?
 
Physics news on Phys.org
Cylindrical symmetry around z-axis essentially means that the field depends only on ##\rho## (and possibly ##z## but not ##\phi##). It doesn't necessarily means that it is in the ##\hat\phi## direction or that it is zero.
 
Last edited:
Delta2 said:
Cylindrical symmetry around z-axis essentially means that the field depends only on ##\rho## (and possibly ##z## but not ##\phi##). It doesn't necessarily means that it is in the ##\hat\phi## direction or that it is zero.

can you give me example when it not zero in ##\hat \phi##?

ohh so you mean that it can have component in the ##\phi## direction, but the derivative with respect to ##\phi## will always be zero?
 
sagigever said:
can you give me example when it not zero in ##\hat \phi##?

ohh so you mean that it can have component in the ##\phi## direction, but the derivative with respect to ##\phi## will always be zero?
yes. An example where we have cylindrical symmetry and the field is not zero (however its in the ##\hat\phi## direction) is the magnetic field of an infinitely long thin wire that lies at the z-axis and carries current I. Then the field is $$\mathbf{B}=\frac{\mu_0}{2\pi r}I\hat\phi$$. As you can see it depends only on ##r## (not on ##\phi## or ##z##) and it is not zero.
 
  • Like
Likes sagigever
An example of a cylindrical symmetric field that is in the ##\hat\rho## direction is that of the electric field of an infinitely long thin charge density ##\lambda## that lies again in the z-axis. The Electric field is given by
$$\mathbf{E}=\frac{\lambda}{2\pi\epsilon_0\rho}\hat\rho$$.
 
This is from Griffiths' Electrodynamics, 3rd edition, page 352. I am trying to calculate the divergence of the Maxwell stress tensor. The tensor is given as ##T_{ij} =\epsilon_0 (E_iE_j-\frac 1 2 \delta_{ij} E^2)+\frac 1 {\mu_0}(B_iB_j-\frac 1 2 \delta_{ij} B^2)##. To make things easier, I just want to focus on the part with the electrical field, i.e. I want to find the divergence of ##E_{ij}=E_iE_j-\frac 1 2 \delta_{ij}E^2##. In matrix form, this tensor should look like this...
Thread 'Applying the Gauss (1835) formula for force between 2 parallel DC currents'
Please can anyone either:- (1) point me to a derivation of the perpendicular force (Fy) between two very long parallel wires carrying steady currents utilising the formula of Gauss for the force F along the line r between 2 charges? Or alternatively (2) point out where I have gone wrong in my method? I am having problems with calculating the direction and magnitude of the force as expected from modern (Biot-Savart-Maxwell-Lorentz) formula. Here is my method and results so far:- This...
Back
Top