delgeezee
- 12
- 0
Show that matrix A is invertible for all values of $$ \theta$$; then find $$A^{-1}$$ using
$$A^{-1}= \frac{1}{det(A)}adj(A)$$
A = [table="width: 200"]
[tr]
[td]cos$$ \theta$$[/td]
[td]-sin$$ \theta$$[/td]
[td]0[/td]
[/tr]
[tr]
[td]sin$$ \theta$$[/td]
[td]cos$$ \theta$$[/td]
[td]0[/td]
[/tr]
[tr]
[td]0[/td]
[td]0[/td]
[td]1[/td]
[/tr]
[/table]
----------
By cofactoring along the 3rd row, I find det(A) = (1)*($$ cos^2\theta + sin^2\theta$$) =1 , which is a nonzero and implies that A is invertible.
To get the Andjuct of A or Adj(A) , I form a cofactor matrix C and transpose it.
Adj(A) = $$C^{T}$$ =
A = [table="width: 200"]
[tr]
[td]cos$$ \theta$$[/td]
[td]sin$$ \theta$$[/td]
[td]0[/td]
[/tr]
[tr]
[td]-sin$$ \theta$$[/td]
[td]cos$$ \theta$$[/td]
[td]0[/td]
[/tr]
[tr]
[td]0[/td]
[td]0[/td]
[td]1[/td]
[/tr]
[/table]
which also happens to be $$A^{-1}$$
My Question is how am I suppose to prove A is invertible for all Values of $$/theta$$?
My gut tells me I am suppose to state that $$A^{-1}= \frac{1}{det(A)}adj(A)$$ does not depend on $$\theta$$. Is there a more definitive way of showing A is invertible for all Values of $$\theta$$?
$$A^{-1}= \frac{1}{det(A)}adj(A)$$
A = [table="width: 200"]
[tr]
[td]cos$$ \theta$$[/td]
[td]-sin$$ \theta$$[/td]
[td]0[/td]
[/tr]
[tr]
[td]sin$$ \theta$$[/td]
[td]cos$$ \theta$$[/td]
[td]0[/td]
[/tr]
[tr]
[td]0[/td]
[td]0[/td]
[td]1[/td]
[/tr]
[/table]
----------
By cofactoring along the 3rd row, I find det(A) = (1)*($$ cos^2\theta + sin^2\theta$$) =1 , which is a nonzero and implies that A is invertible.
To get the Andjuct of A or Adj(A) , I form a cofactor matrix C and transpose it.
Adj(A) = $$C^{T}$$ =
A = [table="width: 200"]
[tr]
[td]cos$$ \theta$$[/td]
[td]sin$$ \theta$$[/td]
[td]0[/td]
[/tr]
[tr]
[td]-sin$$ \theta$$[/td]
[td]cos$$ \theta$$[/td]
[td]0[/td]
[/tr]
[tr]
[td]0[/td]
[td]0[/td]
[td]1[/td]
[/tr]
[/table]
which also happens to be $$A^{-1}$$
My Question is how am I suppose to prove A is invertible for all Values of $$/theta$$?
My gut tells me I am suppose to state that $$A^{-1}= \frac{1}{det(A)}adj(A)$$ does not depend on $$\theta$$. Is there a more definitive way of showing A is invertible for all Values of $$\theta$$?