MHB Prove A is invertable for all values of theta

  • Thread starter Thread starter delgeezee
  • Start date Start date
  • Tags Tags
    Theta
Click For Summary
Matrix A is shown to be invertible for all values of theta because its determinant, calculated as det(A) = 1, is non-zero. This confirms that A is invertible regardless of theta since the determinant does not depend on its value. The adjugate of A, which is also A's inverse, can be derived using the formula A^{-1} = (1/det(A))adj(A). Additionally, A can be interpreted geometrically as a rotation matrix around the z-axis, reinforcing its invertibility. Thus, A is confirmed to be invertible for all theta.
delgeezee
Messages
12
Reaction score
0
Show that matrix A is invertible for all values of $$ \theta$$; then find $$A^{-1}$$ using
$$A^{-1}= \frac{1}{det(A)}adj(A)$$

A = [table="width: 200"]
[tr]
[td]cos$$ \theta$$[/td]
[td]-sin$$ \theta$$[/td]
[td]0[/td]
[/tr]
[tr]
[td]sin$$ \theta$$[/td]
[td]cos$$ \theta$$[/td]
[td]0[/td]
[/tr]
[tr]
[td]0[/td]
[td]0[/td]
[td]1[/td]
[/tr]
[/table]

----------

By cofactoring along the 3rd row, I find det(A) = (1)*($$ cos^2\theta + sin^2\theta$$) =1 , which is a nonzero and implies that A is invertible.
To get the Andjuct of A or Adj(A) , I form a cofactor matrix C and transpose it.

Adj(A) = $$C^{T}$$ =

A = [table="width: 200"]
[tr]
[td]cos$$ \theta$$[/td]
[td]sin$$ \theta$$[/td]
[td]0[/td]
[/tr]
[tr]
[td]-sin$$ \theta$$[/td]
[td]cos$$ \theta$$[/td]
[td]0[/td]
[/tr]
[tr]
[td]0[/td]
[td]0[/td]
[td]1[/td]
[/tr]
[/table]

which also happens to be $$A^{-1}$$
My Question is how am I suppose to prove A is invertible for all Values of $$/theta$$?

My gut tells me I am suppose to state that $$A^{-1}= \frac{1}{det(A)}adj(A)$$ does not depend on $$\theta$$. Is there a more definitive way of showing A is invertible for all Values of $$\theta$$?
 
Physics news on Phys.org
delgeezee said:
My Question is how am I suppose to prove A is invertible for all Values of $$/theta$$?

You found that \det(A) \ne 0. That's all you need to do.
 
I agree that you've done enough, but to show that the determinant is non-zero for all $\theta$, I would say something along the lines of the following.

$\forall \theta \in \mathbb{R}$ it follows that $\sin (\theta ) \text{ and} \cos( \theta ) \in \mathbb{R}$. Every element in $A$ is in $\mathbb{R}$ so operations involving those elements are also in $\mathbb{R}$ and the result you found holds for all $\theta$.

Not the best wording maybe, but that's the general idea.
 
delgeezee said:
My Question is how am I suppose to prove A is invertible for all Values of $$/theta$$?

My gut tells me I am suppose to state that $$A^{-1}= \frac{1}{det(A)}adj(A)$$ does not depend on $$\theta$$. Is there a more definitive way of showing A is invertible for all Values of $$\theta$$?
$A^{-1}= \begin{bmatrix}\cos\theta & \sin\theta &0 \\ -\sin\theta & \cos\theta & 0 \\ 0&0&1 \end{bmatrix}$, which does depend on $\theta$. But $\det A=1$, and the constant $1$ is nonzero and does not depend on $\theta$. That is all you need, to conclude that $A$ is invertible for all $\theta.$
 
delgeezee said:
Show that matrix A is invertible for all values of $$ \theta$$; then find $$A^{-1}$$ using
$$A^{-1}= \frac{1}{det(A)}adj(A)$$

Another way of finding $A^{-1}$ in this case (I don't know if you have covered it) is to consider $$A(\theta)= \begin{bmatrix}\cos\theta & -\sin\theta &0 \\ \sin\theta & \;\;\cos\theta & 0 \\ 0&0&1 \end{bmatrix}$$ as a rotation around the $z$-axis by angle $\theta$. Then, by geometric considerations $A(\theta)A(-\theta)=A(0)=I$, so $$A^{-1}(\theta)=A(-\theta)=\begin{bmatrix}\cos(-\theta) & -\sin(-\theta) &0 \\ \sin(-\theta) & \;\;\cos(-\theta) & 0 \\ 0&0&1 \end{bmatrix}=\begin{bmatrix}\;\;\cos\theta & \sin\theta &0 \\ -\sin\theta & \cos\theta & 0 \\ 0&0&1 \end{bmatrix}$$
 
Thread 'How to define a vector field?'
Hello! In one book I saw that function ##V## of 3 variables ##V_x, V_y, V_z## (vector field in 3D) can be decomposed in a Taylor series without higher-order terms (partial derivative of second power and higher) at point ##(0,0,0)## such way: I think so: higher-order terms can be neglected because partial derivative of second power and higher are equal to 0. Is this true? And how to define vector field correctly for this case? (In the book I found nothing and my attempt was wrong...

Similar threads

  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 4 ·
Replies
4
Views
479
  • · Replies 15 ·
Replies
15
Views
3K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 22 ·
Replies
22
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
8
Views
2K