MHB Prove Acute Triangle Inequality: $\sin 2\alpha \gt \sin 2\beta \gt \sin 2\gamma$

AI Thread Summary
In an acute triangle with interior angles α, β, and γ, if α < β < γ, it can be proven that sin 2α > sin 2β > sin 2γ. The discussion emphasizes the relationship between the angles and their sine values, leveraging properties of the sine function in acute angles. The proof involves analyzing the behavior of the sine function, which is increasing in the interval of acute angles. The participants acknowledge the correctness of the proof presented. The conclusion reinforces the established inequality among the sine values of the angles.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Let $\alpha,\,\beta$ and $\gamma$ be the interior angles of an acute triangle.

Prove that if $\alpha \lt \beta \lt \gamma$, then $\sin 2\alpha \gt \sin 2\beta \gt \sin 2\gamma$.
 
Mathematics news on Phys.org
anemone said:
Let $\alpha,\,\beta$ and $\gamma$ be the interior angles of an acute triangle.

Prove that if $\alpha \lt \beta \lt \gamma$, then $\sin 2\alpha \gt \sin 2\beta \gt \sin 2\gamma$.

There are 2 cases

no angle is less than $\frac{\pi}{4}$ and from given condition no angle is greater than or equal to $\frac{\pi}{2}$
so we have

$\frac{\pi}{4} \le \alpha \lt \beta \lt \gamma \lt \frac{\pi}{2}$

hence $\frac{\pi}{2} \le 2\alpha \lt 2\beta \lt 2\gamma \lt \pi$

as $\sin $ is monotonically decreasing from $\frac{\pi}{2}$ to $\pi$ hence $\sin 2\alpha \gt \sin 2\beta \gt \sin 2\gamma$.

case 2 :
one angle $\alpha \lt \frac{\pi}{4}$ and hence $\frac{\pi}{2} - \alpha <\beta$ otherwise $\gamma \ge \frac{\pi}{2}$
$\frac{\pi}{4} \le \frac{\pi}{2}- \alpha \lt \beta \lt \gamma \lt \frac{\pi}{2}$
hence $\frac{\pi}{2} \le \pi- 2\alpha \lt 2\beta \lt 2\gamma \lt \pi$
as $\sin $ is monotonically decreasing from $\frac{\pi}{2}$ to $\pi$ hence $\sin (\pi-2\alpha) \gt \sin 2\beta \gt \sin 2\gamma$.
or $\sin 2\alpha \gt \sin 2\beta \gt \sin 2\gamma$.
 
kaliprasad said:
There are 2 cases

no angle is less than $\frac{\pi}{4}$ and from given condition no angle is greater than or equal to $\frac{\pi}{2}$
so we have

$\frac{\pi}{4} \le \alpha \lt \beta \lt \gamma \lt \frac{\pi}{2}$

hence $\frac{\pi}{2} \le 2\alpha \lt 2\beta \lt 2\gamma \lt \pi$

as $\sin $ is monotonically decreasing from $\frac{\pi}{2}$ to $\pi$ hence $\sin 2\alpha \gt \sin 2\beta \gt \sin 2\gamma$.

case 2 :
one angle $\alpha \lt \frac{\pi}{4}$ and hence $\frac{\pi}{2} - \alpha <\beta$ otherwise $\gamma \ge \frac{\pi}{2}$
$\frac{\pi}{4} \le \frac{\pi}{2}- \alpha \lt \beta \lt \gamma \lt \frac{\pi}{2}$
hence $\frac{\pi}{2} \le \pi- 2\alpha \lt 2\beta \lt 2\gamma \lt \pi$
as $\sin $ is monotonically decreasing from $\frac{\pi}{2}$ to $\pi$ hence $\sin (\pi-2\alpha) \gt \sin 2\beta \gt \sin 2\gamma$.
or $\sin 2\alpha \gt \sin 2\beta \gt \sin 2\gamma$.
Very well done kaliprasad!(Cool)
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Back
Top