Prove $BD=2CD$ in Triangle $ABC$

  • Context: MHB 
  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Triangle
Click For Summary
SUMMARY

In triangle $ABC$ with $AB=AC$, point $D$ lies on $BC$ and point $E$ is on $AD$ such that $\angle BED=2 \angle CED=\angle BAC$. The objective is to prove that $BD=2CD$. This geometric relationship can be established through the application of angle bisector properties and triangle similarity. The proof utilizes the fact that the angles formed create proportional segments on the sides of the triangle.

PREREQUISITES
  • Understanding of triangle properties, specifically isosceles triangles.
  • Familiarity with angle bisector theorem.
  • Knowledge of triangle similarity criteria.
  • Basic trigonometric identities and their applications in geometry.
NEXT STEPS
  • Study the Angle Bisector Theorem and its applications in triangle geometry.
  • Explore triangle similarity and congruence proofs.
  • Learn about trigonometric ratios in relation to triangle angles.
  • Investigate advanced geometric constructions and their proofs.
USEFUL FOR

Mathematics students, geometry enthusiasts, and educators looking to deepen their understanding of triangle properties and geometric proofs.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
View attachment 2512
In a triangle $ABC$, it's given that $AB=AC$, point $D$ is on $BC$ whereas point $E$ is on $AD$ such that $\angle BED=2 \angle CED=\angle BAC$.

Prove that $BD=2CD$.

Note:

This problem is actually posted by Albert at another math forum about 2 years ago and for all information, I have gained his "permission" to post the exact same problem here, for the folks to have some fun solving it either trigonometrically or geometrically.
 

Attachments

  • BD=2CD.JPG
    BD=2CD.JPG
    6.6 KB · Views: 125
Last edited:
Mathematics news on Phys.org
My solution:
View attachment 2541

Since AB=AC, I first let $\angle CED=\alpha$, then $\angle EBC=\beta$ and $\angle DAC=\theta$.
A little working on the triangle $EBC$ shows that $\alpha+\beta+\theta=90^{\circ}$

Consider the triangles $EBD$ and $ECD$, we have:
$\dfrac{ED}{\sin \beta}=\dfrac{BD}{\sin 2\alpha}$ and $\dfrac{ED}{\sin(\beta-\alpha+2\theta)}=\dfrac{CD}{\sin \alpha}$

This yields
$\dfrac{BD}{CD}=\left(\dfrac{\sin 2\alpha}{\sin \alpha} \right)\left(\dfrac{\sin (\beta-\alpha+2\theta)}{\sin \beta} \right)$

We then try to eliminate the variable $\beta$ by using the relation $\beta=90^{\circ}-(\alpha+\theta)$, we get:

$\begin{align*}\dfrac{BD}{CD}&=\left(\dfrac{\sin 2\alpha}{\sin \alpha} \right) \left(\dfrac{\sin (90^{\circ}-(\theta+\alpha))-\alpha+2\theta)}{\sin (90^{\circ}-(\theta+\alpha))} \right)\\&=\dfrac{\sin 2\alpha}{\sin \alpha}\cdot\dfrac{\sin (90^{\circ}-(2\alpha-\theta))}{\sin(90^{\circ}-(\theta+\alpha))}\\&=\dfrac{\sin 2\alpha}{\sin \alpha}\cdot\dfrac{\cos (2\alpha-\theta)}{\cos (\theta+\alpha)}\\&=\dfrac{\sin 2\alpha}{\sin \alpha}\cdot\dfrac{\cos 2\alpha \cos\theta+\sin 2\alpha \sin \theta}{\cos \theta \cos\alpha-\sin \theta \sin \alpha}(*)\end{align*}$

We know the RHS expression will be reduced to 2, so, I think eliminating another variable would be a wise way to go.

Now, consider the triangles $ABE$ and $ACE$, we have:

$\dfrac{AB}{\sin(180^{\circ}- 2\alpha)}=\dfrac{AE}{\sin \theta}$ and $\dfrac{AC}{\sin(180^{\circ}- \alpha)}=\dfrac{AE}{\sin(\alpha-\theta)}$

Since $AB=AC$, the above simplifies to:

$\dfrac{\sin 2\alpha}{\sin \theta}=\dfrac{\sin \alpha}{\sin(\alpha-\theta)}$

$\dfrac{2\sin \alpha \cos \alpha}{\sin \alpha}\cdot\sin(\alpha-\theta)=\sin \theta$

$2\cos \alpha\cdot\sin(\alpha-\theta)=\sin \theta$

$2\cos \alpha\cdot(\sin \alpha \cos\theta-\cos \alpha \sin\theta)=\sin \theta$

$2\cos \alpha\cdot\sin \alpha \cos\theta=\sin \theta(1+2\cos ^2 \alpha)$

$\tan \theta=\dfrac{\sin 2\alpha}{1+2\cos ^2 \alpha}$ (**)

To merge these two equations ((**)and (*)), we divide the equation (*), top and bottom, by $\cos \theta$ to get:

$\dfrac{BD}{CD}=\dfrac{\sin 2\alpha}{\sin \alpha}\cdot \dfrac{\cos 2\alpha +\sin 2\alpha \tan\theta}{\cos \alpha -\sin \alpha \tan\theta}$

therefore,

$\begin{align*}\dfrac{BD}{CD}&=\dfrac{2\sin \alpha \cos \alpha}{\sin \alpha}\cdot \dfrac{\cos 2\alpha +\sin 2\alpha\cdot\frac{\sin 2\alpha}{1+2\cos ^2 \alpha}}{\cos \alpha-\sin \alpha\left(\dfrac{\sin 2\alpha}{1+2\cos ^2 \alpha} \right)}\\&=2 \cos \alpha\cdot \dfrac{\cos 2\alpha +2\cos^2 \alpha \cos 2\alpha+\sin^2 2\alpha}{\cos \alpha+2\cos^3 \alpha-\sin \alpha \sin 2\alpha}\\&=2 \cos \alpha\cdot \dfrac{\cos 2\alpha(1+2\cos^2 \alpha)+\sin^2 2\alpha}{\cos \alpha+2\cos^3 \alpha-2\sin \alpha \sin \alpha \cos \alpha}\\&=2 \cos \alpha\cdot \dfrac{\cos 2\alpha(\cos 2\alpha+2)+\sin^2 2\alpha}{\cos \alpha(1+2\cos^2\alpha-2\sin^2 \alpha)}\\&=2 \cos \alpha\cdot \dfrac{\cos^2 2\alpha+\sin^2 2\alpha+2\cos 2\alpha}{\cos \alpha(1+2(\cos^2\alpha-\sin^2 \alpha))}\\&=2 \cos \alpha\cdot \dfrac{1+2\cos 2\alpha}{\cos \alpha(1+2\cos 2\alpha)}\\&=2 \cos \alpha\cdot\dfrac{1}{\cos \alpha}\\&=2 \end{align*}$

Hence,

$BD=2CD$ (Q.E.D.)
 

Attachments

  • BD=2CD.JPG
    BD=2CD.JPG
    32.3 KB · Views: 122

Attachments

  • BD=2CD answer.JPG
    BD=2CD answer.JPG
    70.9 KB · Views: 107

Similar threads

  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 13 ·
Replies
13
Views
3K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K