MHB Prove $BD=2CD$ in Triangle $ABC$

  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Triangle
Click For Summary
In triangle $ABC$ with $AB=AC$, point $D$ lies on $BC$ and point $E$ on $AD$, where $\angle BED=2 \angle CED=\angle BAC$. The goal is to prove that $BD=2CD$. The discussion includes various approaches to the proof, emphasizing both trigonometric and geometric methods. Participants are encouraged to share their solutions and insights on the problem. The problem aims to engage the community in mathematical exploration and problem-solving.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
View attachment 2512
In a triangle $ABC$, it's given that $AB=AC$, point $D$ is on $BC$ whereas point $E$ is on $AD$ such that $\angle BED=2 \angle CED=\angle BAC$.

Prove that $BD=2CD$.

Note:

This problem is actually posted by Albert at another math forum about 2 years ago and for all information, I have gained his "permission" to post the exact same problem here, for the folks to have some fun solving it either trigonometrically or geometrically.
 

Attachments

  • BD=2CD.JPG
    BD=2CD.JPG
    6.6 KB · Views: 125
Last edited:
Mathematics news on Phys.org
My solution:
View attachment 2541

Since AB=AC, I first let $\angle CED=\alpha$, then $\angle EBC=\beta$ and $\angle DAC=\theta$.
A little working on the triangle $EBC$ shows that $\alpha+\beta+\theta=90^{\circ}$

Consider the triangles $EBD$ and $ECD$, we have:
$\dfrac{ED}{\sin \beta}=\dfrac{BD}{\sin 2\alpha}$ and $\dfrac{ED}{\sin(\beta-\alpha+2\theta)}=\dfrac{CD}{\sin \alpha}$

This yields
$\dfrac{BD}{CD}=\left(\dfrac{\sin 2\alpha}{\sin \alpha} \right)\left(\dfrac{\sin (\beta-\alpha+2\theta)}{\sin \beta} \right)$

We then try to eliminate the variable $\beta$ by using the relation $\beta=90^{\circ}-(\alpha+\theta)$, we get:

$\begin{align*}\dfrac{BD}{CD}&=\left(\dfrac{\sin 2\alpha}{\sin \alpha} \right) \left(\dfrac{\sin (90^{\circ}-(\theta+\alpha))-\alpha+2\theta)}{\sin (90^{\circ}-(\theta+\alpha))} \right)\\&=\dfrac{\sin 2\alpha}{\sin \alpha}\cdot\dfrac{\sin (90^{\circ}-(2\alpha-\theta))}{\sin(90^{\circ}-(\theta+\alpha))}\\&=\dfrac{\sin 2\alpha}{\sin \alpha}\cdot\dfrac{\cos (2\alpha-\theta)}{\cos (\theta+\alpha)}\\&=\dfrac{\sin 2\alpha}{\sin \alpha}\cdot\dfrac{\cos 2\alpha \cos\theta+\sin 2\alpha \sin \theta}{\cos \theta \cos\alpha-\sin \theta \sin \alpha}(*)\end{align*}$

We know the RHS expression will be reduced to 2, so, I think eliminating another variable would be a wise way to go.

Now, consider the triangles $ABE$ and $ACE$, we have:

$\dfrac{AB}{\sin(180^{\circ}- 2\alpha)}=\dfrac{AE}{\sin \theta}$ and $\dfrac{AC}{\sin(180^{\circ}- \alpha)}=\dfrac{AE}{\sin(\alpha-\theta)}$

Since $AB=AC$, the above simplifies to:

$\dfrac{\sin 2\alpha}{\sin \theta}=\dfrac{\sin \alpha}{\sin(\alpha-\theta)}$

$\dfrac{2\sin \alpha \cos \alpha}{\sin \alpha}\cdot\sin(\alpha-\theta)=\sin \theta$

$2\cos \alpha\cdot\sin(\alpha-\theta)=\sin \theta$

$2\cos \alpha\cdot(\sin \alpha \cos\theta-\cos \alpha \sin\theta)=\sin \theta$

$2\cos \alpha\cdot\sin \alpha \cos\theta=\sin \theta(1+2\cos ^2 \alpha)$

$\tan \theta=\dfrac{\sin 2\alpha}{1+2\cos ^2 \alpha}$ (**)

To merge these two equations ((**)and (*)), we divide the equation (*), top and bottom, by $\cos \theta$ to get:

$\dfrac{BD}{CD}=\dfrac{\sin 2\alpha}{\sin \alpha}\cdot \dfrac{\cos 2\alpha +\sin 2\alpha \tan\theta}{\cos \alpha -\sin \alpha \tan\theta}$

therefore,

$\begin{align*}\dfrac{BD}{CD}&=\dfrac{2\sin \alpha \cos \alpha}{\sin \alpha}\cdot \dfrac{\cos 2\alpha +\sin 2\alpha\cdot\frac{\sin 2\alpha}{1+2\cos ^2 \alpha}}{\cos \alpha-\sin \alpha\left(\dfrac{\sin 2\alpha}{1+2\cos ^2 \alpha} \right)}\\&=2 \cos \alpha\cdot \dfrac{\cos 2\alpha +2\cos^2 \alpha \cos 2\alpha+\sin^2 2\alpha}{\cos \alpha+2\cos^3 \alpha-\sin \alpha \sin 2\alpha}\\&=2 \cos \alpha\cdot \dfrac{\cos 2\alpha(1+2\cos^2 \alpha)+\sin^2 2\alpha}{\cos \alpha+2\cos^3 \alpha-2\sin \alpha \sin \alpha \cos \alpha}\\&=2 \cos \alpha\cdot \dfrac{\cos 2\alpha(\cos 2\alpha+2)+\sin^2 2\alpha}{\cos \alpha(1+2\cos^2\alpha-2\sin^2 \alpha)}\\&=2 \cos \alpha\cdot \dfrac{\cos^2 2\alpha+\sin^2 2\alpha+2\cos 2\alpha}{\cos \alpha(1+2(\cos^2\alpha-\sin^2 \alpha))}\\&=2 \cos \alpha\cdot \dfrac{1+2\cos 2\alpha}{\cos \alpha(1+2\cos 2\alpha)}\\&=2 \cos \alpha\cdot\dfrac{1}{\cos \alpha}\\&=2 \end{align*}$

Hence,

$BD=2CD$ (Q.E.D.)
 

Attachments

  • BD=2CD.JPG
    BD=2CD.JPG
    32.3 KB · Views: 121

Attachments

  • BD=2CD answer.JPG
    BD=2CD answer.JPG
    70.9 KB · Views: 106
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 13 ·
Replies
13
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K