A more general definition of the binomial coefficient (valid for non-integer p) is:
<br />
\left(\begin{array}{c}<br />
p<br />
\\<br />
n<br />
\end{array} \right) \equiv \frac{p (p - 1) \ldots (p - n + 1)}{n!}, \ n > 0,<br />
So, you don't need to worry about the case n - p < 0 too much. If p \in \mathbb{N}, then, starting with n_0 = p + 1, the numerator of this fraction is always zero, so the series is a polynomial and is definitely convergent for any value of x. Suppose p \notin \mathbb{N}. Then, \Gamma(-p) exists, and we may write:
<br />
\left(\begin{array}{c}<br />
p<br />
\\<br />
n<br />
\end{array} \right) = \frac{(-1)^n \, (n - p - 1) \ldots (-p + 1) (-p)}{n!} = \frac{(-1)^n \, \Gamma(n - p)}{\Gamma(-p) \, \Gamma(n + 1)}<br />
But, for large λ the Euler gamma function has the asymptotic form (Stirling's formula):
<br />
\Gamma(\lambda + 1) \sim \sqrt{2 \pi \lambda} \, \left( \frac{\lambda}{e} \right)^{\lambda}, \ \lambda \rightarrow \infty<br />
and
<br />
a_n \sim \frac{(-1)^n}{\Gamma(-p)} \, \frac{(n - p - 1)^{n - p - \frac{1}{2}}}{n^{n + \frac{1}{2}}} \, e^{-n + p + 1 + n} \sim \frac{(-1)^n}{\Gamma(-p)} \, \left( \frac{e}{n} \right)^{p + 1} \rightarrow 0, \ n \rightarrow \infty<br />
for p > -1.
For p = -1, the binomial coefficient is:
<br />
a_n = (-1)^n<br />
and the series diverges on both ends.
For p <-1 (and non-natural number), the main coefficient diverges, and, therefore the series should diverge by the necessary condition for convergence.
You still haven't proven that the series converges or diverges at the endpoints for p < -1.