Is this correct?
Under polar coordinates, the definitions of ##\bar{x}## and ##\bar{y}## become
##\bar{r}\cos\bar{\theta}=\frac{1}{L}\int_{\theta_1}^{\theta_2}r(\theta)\cos\theta\sqrt{r^2(\theta)+(\frac{dr(\theta)}{d\theta})^2}d\theta##
##\bar{r}\sin\bar{\theta}=\frac{1}{L}\int_{\theta_1}^{\theta_2}r(\theta)\sin\theta\sqrt{r^2(\theta)+(\frac{dr(\theta)}{d\theta})^2}d\theta##
where ##\bar{r}## is the magnitude of the position vector ##\vec{r}## of the centroid and ##\bar{\theta}## is the angle the position vector ##\vec{r}## makes with the positive x-axis. (##\bar{r}## and ##\bar{\theta}## may not necessarily be the average values of ##r## and ##\theta##. Would they necessarily and sufficiently be so?) ##r^2(\theta)## means ##r^2## is a function of ##\theta##.
Consider a rotation of the coordinate axes by an angle ##\alpha## clockwise. Then the point ##(r, \theta)\to(r, \theta+\alpha)## and the value ##r(\theta)\to r(\theta+\alpha)##. [##r(\theta+\alpha)## means for every ##\theta## in ##r(\theta)## we substitute ##\theta+\alpha##.] We have
##\bar{x}'=\frac{1}{L}\int_{\theta_1+\alpha}^{\theta_2+\alpha}r(\theta+\alpha)\cos(\theta+\alpha)\sqrt{r^2(\theta+\alpha)+(\frac{dr(\theta+\alpha)}{d\theta})^2}d\theta##
where the ##\bar{x}'## is the x-coordinate of the centroid in the new rotated coordinate system.
Using the substitution ##\beta=\theta+\alpha##, ##\beta_1=\theta_1+\alpha##, ##\beta_2=\theta_2+\alpha## and ##\frac{d\theta}{d\beta}=1##, we have
##\bar{r}'\cos\bar{\theta}'=\bar{x}'=\frac{1}{L}\int_{\beta_1}^{\beta_2}r(\beta)\cos(\beta)\sqrt{r^2(\beta)+(\frac{dr(\beta)}{d\beta})^2}d\beta##
where the primed quantities are the corresponding quantities in the new rotated coordinate system.
Recall that ##\bar{r}\cos\bar{\theta}=\frac{1}{L}\int_{\theta_1}^{\theta_2}r(\theta)\cos\theta\sqrt{r^2(\theta)+(\frac{dr(\theta)}{d\theta})^2}d\theta## is a function of ##\theta_1, \theta_2## and ##L##. Let's call it ##f=f(\theta_1, \theta_2, L)##. Then
##\bar{r}'\cos\bar{\theta}'=\bar{x}'=f(\beta_1, \beta_2, L)=f(\theta_1+\alpha, \theta_2+\alpha, L)##.
But it remains to show why ##\bar{r}'=\bar{r}## and ##\cos\bar{\theta}'=\cos(\bar{\theta}+\alpha)##. That is, why
##f(\theta_1+\alpha, \theta_2+\alpha, L)=\bar{r}\cos(\bar{\theta}+\alpha)##.