Prove $\hat{A}+\hat{B}$ Commutator $\lambda$ Complex Number Relation

  • Thread starter Thread starter kcirick
  • Start date Start date
  • Tags Tags
    Identity Operator
kcirick
Messages
54
Reaction score
0
Question:
If \hat{A} and \hat{B} are two operators such that \left[\hat{A},\hat{B}\right] = \lambda, where \lambda is a complex number, and if \mu is a second complex number, prove that:

e^{\mu\left(\hat{A}+\hat{B}\right)}=e^{\mu\hat{A}}e^{\mu\hat{B}}e^{-\mu^{2}\frac{\lambda}{2}}

What I have so far:
One can expand the exponential into power series:

e^{\mu\left(\hat{A}+\hat{B}\right)}=\sum_{n=0}^{\infty}\frac{\left(\mu\left(\hat{A}+\hat{B}\right)\right)^{n}}{n!}

e^{\mu\hat{A}}e^{\mu\hat{B}}e^{-\mu^{2}\frac{\lambda}{2}}=\sum_{p,q,r=0}^{\infty}\frac{\mu^{p}\hat{A}^{p}}{p!}\frac{\mu^{q}\hat{B}^{q}}{q!}\frac{\left(-\frac{\mu^2}{2}\right)^{r}\left(\hat{A}\hat{B}-\hat{B}\hat{A}\right)^{r}}{r!}

But I don't get any clues from expanding. So I went onto doing something different:

\left[\hat{A},\hat{B}\right]=\lambda \Rightarrow \left[\hat{A},\hat{B}\right]-\lambda=0
\hat{A}\hat{B}=\hat{B}\hat{A}+\lambda
\hat{B}\hat{A}=\hat{A}\hat{B}-\lambda

\left(\hat{A}+\hat{B}\right)^{2}=\hat{A}^2+\hat{A}\hat{B}+\hat{B}\hat{A}+\hat{B}^2=\hat{A}^2+\hat{A}\hat{B}+\hat{A}\hat{B}-\lambda+\hat{B}^2=\left(\hat{A}^2+2\hat{A}\hat{B}+\hat{B}^2\right)-\lambda

... then I proceeded to the power of 3, but I didn't get a pattern that I was hoping to get, so I don't know what I would get for power of n. Then I don't know what else to try. If any of you can help me out, It will get greatly appreciated!

Thank you!
 
Physics news on Phys.org
Try writing out the first few terms for \mu, \mu^2, \mu^3 etc for the sum

e^{\mu\hat{A}}e^{\mu\hat{B}}e^{-\mu^{2}\frac{\lambda}{2}}=\sum_{p,q,r=0}^{\infty}\frac{\mu^{p}\hat{A}^{p}}{p!}\frac{\mu^{q}\hat{B}^{q}}{q!}\frac{\left(-\frac{\mu^2}{2}\right)^{r}\left(\hat{A}\hat{B}-\hat{B}\hat{A}\right)^{r}}{r!}

and then rearrange. Remember that p, q, and r are all independant of each other, so you can have p=1, q=r=0 etc. I think that should work.
 
Just use the Campbel-Baker-Hausorff formula.

Daniel.
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top