Prove Inequality: $\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}+\dfrac{1}{d}$

  • Context: MHB 
  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Inequality
Click For Summary
SUMMARY

The inequality $\dfrac{1}{\dfrac{1}{a}+\dfrac{1}{b}}+\dfrac{1}{\dfrac{1}{c}+\dfrac{1}{d}} \le \dfrac{1}{\dfrac{1}{a+c}+\dfrac{1}{b+d}}$ holds true for all positive real numbers $a, b, c, d$. The proof involves manipulating the inequality to show that the right-hand side is always greater than zero, which is confirmed by the expression $\dfrac{(ad-bc)^2}{(a+b+c+d)(a+b)(c+d)} \ge 0$. This establishes the validity of the inequality through algebraic transformations and the properties of positive numbers.

PREREQUISITES
  • Understanding of algebraic manipulation and inequalities
  • Familiarity with the concept of harmonic means
  • Knowledge of positive real numbers and their properties
  • Experience with mathematical proofs and logical reasoning
NEXT STEPS
  • Study the properties of harmonic means and their applications in inequalities
  • Learn about the Cauchy-Schwarz inequality and its implications in algebra
  • Explore other inequalities involving fractions and their proofs
  • Investigate the role of symmetry in mathematical inequalities
USEFUL FOR

Mathematicians, students studying inequalities, and anyone interested in advanced algebraic proofs will benefit from this discussion.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Prove that $\dfrac{1}{\dfrac{1}{a}+\dfrac{1}{b}}+\dfrac{1}{ \dfrac{1}{c}+\dfrac{1}{d}} \le \dfrac{1}{\dfrac{1}{a+c}+\dfrac{1}{b+d}}$ for all positive real numbers $a, b, c, d$.
 
Mathematics news on Phys.org
anemone said:
Prove that $\dfrac{1}{\dfrac{1}{a}+\dfrac{1}{b}}+\dfrac{1}{ \dfrac{1}{c}+\dfrac{1}{d}} \le \dfrac{1}{\dfrac{1}{a+c}+\dfrac{1}{b+d}}$ for all positive real numbers $a, b, c, d$.

Hello.

I can't think of another thing that solved with the limits.

Making calculations.(Whew)

T=\dfrac{1}{1+\frac{d}{b}+\frac{b}{a}+\frac{d}{a}}+ \dfrac{1}{1+\frac{b}{d}+\frac{b}{c}+\frac{d}{c}}+ \dfrac{1}{1+\frac{a}{b}+\frac{c}{b}+\frac{c}{a}}+ \dfrac{1}{1+\frac{a}{d}+\frac{a}{c}+\frac{c}{d}} \le{1}

We note that, when they are the same two by two, the result is 1.Now let's look:

\displaystyle\lim_{a \to{+}\infty}{T}=\dfrac{1}{1+\frac{d}{b}}+ \dfrac{1}{1+\frac{b}{d}+\frac{b}{c}+\frac{d}{c}}

\displaystyle\lim_{b \to{+}\infty}{} (\dfrac{1}{1+\frac{d}{b}}+ \dfrac{1}{1+\frac{b}{d}+\frac{b}{c}+\frac{d}{c}})=1

It would be like if we choose any of the other variables, because "T" combinations are symmetric.

Regards.
 
mente oscura said:
Hello.

I can't think of another thing that solved with the limits.

Making calculations.(Whew)

T=\dfrac{1}{1+\frac{d}{b}+\frac{b}{a}+\frac{d}{a}}+ \dfrac{1}{1+\frac{b}{d}+\frac{b}{c}+\frac{d}{c}}+ \dfrac{1}{1+\frac{a}{b}+\frac{c}{b}+\frac{c}{a}}+ \dfrac{1}{1+\frac{a}{d}+\frac{a}{c}+\frac{c}{d}} \le{1}

We note that, when they are the same two by two, the result is 1.Now let's look:

\displaystyle\lim_{a \to{+}\infty}{T}=\dfrac{1}{1+\frac{d}{b}}+ \dfrac{1}{1+\frac{b}{d}+\frac{b}{c}+\frac{d}{c}}

\displaystyle\lim_{b \to{+}\infty}{} (\dfrac{1}{1+\frac{d}{b}}+ \dfrac{1}{1+\frac{b}{d}+\frac{b}{c}+\frac{d}{c}})=1

It would be like if we choose any of the other variables, because "T" combinations are symmetric.

Regards.

Thanks for your post, mente oscura! I have been trying to digest what you have come up with for some time, hoping to see the light at the end of the tunnel but I am sorry, I couldn't possibly continue from there.

I want to share the solution that I found with you and the rest of the members:

If we shift everything from the left to the right, we get

$\dfrac{1}{\dfrac{1}{a}+\dfrac{1}{b}}+\dfrac{1}{ \dfrac{1}{c}+\dfrac{1}{d}} \le \dfrac{1}{\dfrac{1}{a+c}+\dfrac{1}{b+d}}$

$0 \le \dfrac{1}{\dfrac{1}{a+c}+\dfrac{1}{b+d}}-\left( \dfrac{1}{\dfrac{1}{a}+\dfrac{1}{b}}+\dfrac{1}{ \dfrac{1}{c}+\dfrac{1}{d}} \right)$

$\dfrac{1}{\dfrac{1}{a+c}+\dfrac{1}{b+d}}-\left(\dfrac{1}{\dfrac{1}{a}+\dfrac{1}{b}}+\dfrac{1}{ \dfrac{1}{c}+\dfrac{1}{d}} \right) \ge 0$

That is to say, if we can prove the RHS is always greater than zero for all positive real numbers $a, b, c, d$, then we are done. Let's see how far this will take us:

$\begin{align*}\small \dfrac{1}{ \dfrac{1}{a+c}+ \dfrac{1}{b+d}}-\left(\dfrac{1}{\dfrac{1}{a}+\dfrac{1}{b}}+\dfrac{1}{ \dfrac{1}{c}+\dfrac{1}{d}} \right)&=\dfrac{1}{\dfrac{b+d+a+c}{(a+c)(b+d)}}-\left(\dfrac{1}{\dfrac{b+a}{ab}}+\dfrac{1}{\dfrac{d+c}{cd}} \right)\\&=\dfrac{(a+c)(b+d)}{a+b+c+d}-\dfrac{ab}{a+b}-\dfrac{cd}{ c+d}\\&=\\&= \small\dfrac{(a+c)(b+d)(a+b)(c+d)-ab(c+d)(a+b+c+d)-cd(a+b)(a+b+c+d)}{(a+b+c+d)(a+b)(c+d)}\\&=\tiny \dfrac{(a+c)(b+d)(a+b)(c+d)-ab(a+b)(c+d)-ab(c+d)^2-cd(a+b)^2-cd(a+b)(c+d)}{(a+b+c+d)(a+b)(c+d)}\\&= \dfrac{(a+b)(c+d)((a+c)(b+d)-ab-cd)-cd(a+b)^2-ab(c+d)^2}{(a+b+c+d)(a+b)(c+d)}\\&=\small\dfrac{(a+b)(c+d)(ab+ad+bc+cd-ab-cd)-cd(a^2+2ab++b^2)-\tiny ab(c^2+2cd++d^2)}{(a+b+c+d)(a+b)(c+d)}\\&= \dfrac{(ac+ad+bc+bd)(ad+bc)-a^2cd-2abcd-b^2cd-abc^2-2abcd-abd^2}{(a+b+c+d)(a+b)(c+d)}\\&=\small\dfrac{a^2cd+abc^2+a^2d^2+abcd+abcd+b^2c^2+abd^2+b^2cd-a^2cd-2abcd-b^2cd-abc^2-2abcd-abd^2}{(a+b+c+d)(a+b)(c+d)}\\&=\dfrac{a^2d^2-2abcd+b^2c^2}{(a+b+c+d)(a+b)(c+d)}\\&=\dfrac{(ad-bc)^2}{(a+b+c+d)(a+b)(c+d)}\\& \ge 0\end{align*}$

since $(ad-bc)^2 \ge 0$ and $(a+b+c+d)(a+b)(c+d) >0$ for all positive real numbers $a, b, c, d$ and we're now done.
emo10.gif
emo38.gif


I am getting so tired of keep previewing the post because of so many fractions and terms that I have to deal with in this particular problem...My head is hurting me so bad now and my vision is blurred for a moment!
 
anemone said:
Thanks for your post, mente oscura! I have been trying to digest what you have come up with for some time, hoping to see the light at the end of the tunnel but I am sorry, I couldn't possibly continue from there.

I want to share the solution that I found with you and the rest of the members:

If we shift everything from the left to the right, we get

$\dfrac{1}{\dfrac{1}{a}+\dfrac{1}{b}}+\dfrac{1}{ \dfrac{1}{c}+\dfrac{1}{d}} \le \dfrac{1}{\dfrac{1}{a+c}+\dfrac{1}{b+d}}$

...

Hello. Uff.:p

My calculations are:

\dfrac{1}{\frac{1}{a}+\frac{1}{b}}+\dfrac{1}{\frac{1}{c}+\frac{1}{d}} \le \dfrac{1}{\frac{1}{a+c}+\frac{1}{b+d}}\dfrac{1}{\frac{a+b}{ab}}+\dfrac{1}{\frac{c+d}{cd}} \le \dfrac{1}{\frac{a+b+c+d}{(a+c)(b+d)}}\dfrac{\frac{c+d}{cd}+\frac{a+b}{ab}}{\frac{(a+b)(c+d)}{abcd}} \le \dfrac{(a+c)(b+d)}{a+b+c+d}\dfrac{ab(c+d)+cd(a+b)}{(a+b)(c+d)} \le \dfrac{(a+c)(b+d)}{a+b+c+d}\dfrac{[ab(c+d)+cd(a+b)](a+b+c+d)}{(a+b)(c+d)(a+c)(b+d)} \le{1}\dfrac{[ab(c+d)+cd(a+b)] \cancel{(a+c)}}{(a+b)(c+d) \cancel{(a+c)}(b+d)}+\dfrac{[ab(c+d)+cd(a+b)] \cancel{(b+d)}}{(a+b)(c+d)(a+c) \cancel{(b+d)}} \le{1}\dfrac{ab \cancel{c+d}}{(a+b) \cancel{(c+d)}(b+d)}+\dfrac{cd \cancel{a+b}}{\cancel{(a+b)}(c+d)(b+d)}+\dfrac{ab \cancel{c+d}}{(a+b) \cancel{(c+d)}(a+c)}+\dfrac{cd \cancel{a+b}}{\cancel{(a+b)}(c+d)(a+c)} \le{1}\dfrac{ab}{ab+ad+b^2+bd}+\dfrac{cd}{bc+bd+cd+d^2}+\dfrac{ab}{a^2+ab+ac+bc}+\dfrac{cd}{ac+ad+c^2+cd} \le{1}

The end:

\dfrac{1}{1+\frac{d}{b}+\frac{b}{a}+\frac{d}{a}}+ \dfrac{1}{1+\frac{b}{d}+\frac{b}{c}+\frac{d}{c}}+ \dfrac{1}{1+\frac{a}{b}+\frac{c}{b}+\frac{c}{a}}+ \dfrac{1}{1+\frac{a}{d}+\frac{a}{c}+\frac{c}{d}} \le{1}

And, from here, as set out in my previous post.

anemone, would already be can it Digest better?(Poolparty)

Regards.
 
Thank you again mente oscura for the clarification post. I appreciate it!
 
anemone said:
Prove that $\dfrac{1}{\dfrac{1}{a}+\dfrac{1}{b}}+\dfrac{1}{ \dfrac{1}{c}+\dfrac{1}{d}} \le \dfrac{1}{\dfrac{1}{a+c}+\dfrac{1}{b+d}}$ for all positive real numbers $a, b, c, d$.
$\dfrac{1}{\dfrac{1}{a}+\dfrac{1}{b}}+\dfrac{1}{ \dfrac{1}{c}+\dfrac{1}{d}}---
(1)$
$ \dfrac{1}{\dfrac{1}{a+c}+\dfrac{1}{b+d}}----(2)$
using $AP\geq GP :$
(1)$\leq\dfrac{\sqrt {ab}}{2}+\leq\dfrac{\sqrt {cd}}{2} $---(3)
(2)$\leq\dfrac{\sqrt {(a+c)(b+d)}}{2}$---(4)
$(3)^2=\dfrac {ab+cd+2\sqrt {abcd}}{4} ----(5)$
$(4)^2=\dfrac {ab+ad+bc+cd}{4}----(6)$
again using $AP\geq GP :$
$(6)\geq (5)$
and the proof is done
 
Last edited:
Albert said:
$\dfrac{1}{\dfrac{1}{a}+\dfrac{1}{b}}+\dfrac{1}{ \dfrac{1}{c}+\dfrac{1}{d}}---
(1)$
$ \dfrac{1}{\dfrac{1}{a+c}+\dfrac{1}{b+d}}----(2)$
using $AP\geq GP :$
(1)$\leq\dfrac{\sqrt {ab}}{2}+\leq\dfrac{\sqrt {cd}}{2} $---(3)
(2)$\leq\dfrac{\sqrt {(a+c)(b+d)}}{2}$---(4)
$(3)^2=\dfrac {ab+cd+2\sqrt {abcd}}{4} ----(5)$
$(4)^2=\dfrac {ab+ad+bc+bd}{4}----(6)$
again using $AP\geq GP :$
$(6)\geq (5)$
and the proof is done
may be I am missing something
but a< b, c < d, b < d does not imply a < c
 
sory a typo in (6)

$(3)^2=\dfrac {ab+cd+2\sqrt {abcd}}{4} ----(5)$
$(4)^2=\dfrac {ab+ad+bc+cd}{4}----(6)$
$ad+bc\geq 2\sqrt {abcd}$
 
Last edited by a moderator:
Albert said:
sory a typo in (6)

$(3)^2=\dfrac {ab+cd+2\sqrt {abcd}}{4} ----(5)$
$(4)^2=\dfrac {ab+ad+bc+cd}{4}----(6)$
$ad+bc\geq 2\sqrt {abcd}$

(6) > (5) => (3) < (4) is true

But (3) < (4) and (1) < (3) and (2) < (4) does not mean (1) < (2) .
 
  • #10
kaliprasad said:
(6) > (5) => (3) < (4) is true

But (3) < (4) and (1) < (3) and (2) < (4) does not mean (1) < (2) .

if (1)=(3) then a=b and c=d---(7)
if (2)=(4) then a+c=b+d---(8)
both (7) and (8) must hold together
(here a,b,c,d>0)
 
Last edited by a moderator:

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 8 ·
Replies
8
Views
2K
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
4
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
1K