Prove Inequality: $\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}+\dfrac{1}{d}$

  • Context: MHB 
  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Inequality
Click For Summary

Discussion Overview

The discussion centers around proving the inequality $\dfrac{1}{\dfrac{1}{a}+\dfrac{1}{b}}+\dfrac{1}{\dfrac{1}{c}+\dfrac{1}{d}} \le \dfrac{1}{\dfrac{1}{a+c}+\dfrac{1}{b+d}}$ for all positive real numbers $a, b, c, d$. The scope includes mathematical reasoning and exploration of potential proofs.

Discussion Character

  • Mathematical reasoning
  • Debate/contested

Main Points Raised

  • Some participants propose a method of shifting terms to prove the inequality, suggesting that if the right-hand side is always greater than zero, the inequality holds.
  • One participant presents a detailed calculation to show that the expression simplifies to a non-negative form, specifically $(ad-bc)^2 \ge 0$.
  • Another participant expresses difficulty in following the calculations and seeks clarification, indicating a struggle with the complexity of the problem.
  • Multiple participants acknowledge typos in their posts, suggesting a need for careful review of their mathematical expressions.

Areas of Agreement / Disagreement

Participants do not reach a consensus on the proof of the inequality. There are competing approaches and expressions of uncertainty regarding the calculations presented.

Contextual Notes

Some calculations presented are complex and may depend on specific assumptions about the variables involved. There are indications of typos and potential errors in earlier posts that could affect the clarity of the arguments.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Prove that $\dfrac{1}{\dfrac{1}{a}+\dfrac{1}{b}}+\dfrac{1}{ \dfrac{1}{c}+\dfrac{1}{d}} \le \dfrac{1}{\dfrac{1}{a+c}+\dfrac{1}{b+d}}$ for all positive real numbers $a, b, c, d$.
 
Mathematics news on Phys.org
anemone said:
Prove that $\dfrac{1}{\dfrac{1}{a}+\dfrac{1}{b}}+\dfrac{1}{ \dfrac{1}{c}+\dfrac{1}{d}} \le \dfrac{1}{\dfrac{1}{a+c}+\dfrac{1}{b+d}}$ for all positive real numbers $a, b, c, d$.

Hello.

I can't think of another thing that solved with the limits.

Making calculations.(Whew)

T=\dfrac{1}{1+\frac{d}{b}+\frac{b}{a}+\frac{d}{a}}+ \dfrac{1}{1+\frac{b}{d}+\frac{b}{c}+\frac{d}{c}}+ \dfrac{1}{1+\frac{a}{b}+\frac{c}{b}+\frac{c}{a}}+ \dfrac{1}{1+\frac{a}{d}+\frac{a}{c}+\frac{c}{d}} \le{1}

We note that, when they are the same two by two, the result is 1.Now let's look:

\displaystyle\lim_{a \to{+}\infty}{T}=\dfrac{1}{1+\frac{d}{b}}+ \dfrac{1}{1+\frac{b}{d}+\frac{b}{c}+\frac{d}{c}}

\displaystyle\lim_{b \to{+}\infty}{} (\dfrac{1}{1+\frac{d}{b}}+ \dfrac{1}{1+\frac{b}{d}+\frac{b}{c}+\frac{d}{c}})=1

It would be like if we choose any of the other variables, because "T" combinations are symmetric.

Regards.
 
mente oscura said:
Hello.

I can't think of another thing that solved with the limits.

Making calculations.(Whew)

T=\dfrac{1}{1+\frac{d}{b}+\frac{b}{a}+\frac{d}{a}}+ \dfrac{1}{1+\frac{b}{d}+\frac{b}{c}+\frac{d}{c}}+ \dfrac{1}{1+\frac{a}{b}+\frac{c}{b}+\frac{c}{a}}+ \dfrac{1}{1+\frac{a}{d}+\frac{a}{c}+\frac{c}{d}} \le{1}

We note that, when they are the same two by two, the result is 1.Now let's look:

\displaystyle\lim_{a \to{+}\infty}{T}=\dfrac{1}{1+\frac{d}{b}}+ \dfrac{1}{1+\frac{b}{d}+\frac{b}{c}+\frac{d}{c}}

\displaystyle\lim_{b \to{+}\infty}{} (\dfrac{1}{1+\frac{d}{b}}+ \dfrac{1}{1+\frac{b}{d}+\frac{b}{c}+\frac{d}{c}})=1

It would be like if we choose any of the other variables, because "T" combinations are symmetric.

Regards.

Thanks for your post, mente oscura! I have been trying to digest what you have come up with for some time, hoping to see the light at the end of the tunnel but I am sorry, I couldn't possibly continue from there.

I want to share the solution that I found with you and the rest of the members:

If we shift everything from the left to the right, we get

$\dfrac{1}{\dfrac{1}{a}+\dfrac{1}{b}}+\dfrac{1}{ \dfrac{1}{c}+\dfrac{1}{d}} \le \dfrac{1}{\dfrac{1}{a+c}+\dfrac{1}{b+d}}$

$0 \le \dfrac{1}{\dfrac{1}{a+c}+\dfrac{1}{b+d}}-\left( \dfrac{1}{\dfrac{1}{a}+\dfrac{1}{b}}+\dfrac{1}{ \dfrac{1}{c}+\dfrac{1}{d}} \right)$

$\dfrac{1}{\dfrac{1}{a+c}+\dfrac{1}{b+d}}-\left(\dfrac{1}{\dfrac{1}{a}+\dfrac{1}{b}}+\dfrac{1}{ \dfrac{1}{c}+\dfrac{1}{d}} \right) \ge 0$

That is to say, if we can prove the RHS is always greater than zero for all positive real numbers $a, b, c, d$, then we are done. Let's see how far this will take us:

$\begin{align*}\small \dfrac{1}{ \dfrac{1}{a+c}+ \dfrac{1}{b+d}}-\left(\dfrac{1}{\dfrac{1}{a}+\dfrac{1}{b}}+\dfrac{1}{ \dfrac{1}{c}+\dfrac{1}{d}} \right)&=\dfrac{1}{\dfrac{b+d+a+c}{(a+c)(b+d)}}-\left(\dfrac{1}{\dfrac{b+a}{ab}}+\dfrac{1}{\dfrac{d+c}{cd}} \right)\\&=\dfrac{(a+c)(b+d)}{a+b+c+d}-\dfrac{ab}{a+b}-\dfrac{cd}{ c+d}\\&=\\&= \small\dfrac{(a+c)(b+d)(a+b)(c+d)-ab(c+d)(a+b+c+d)-cd(a+b)(a+b+c+d)}{(a+b+c+d)(a+b)(c+d)}\\&=\tiny \dfrac{(a+c)(b+d)(a+b)(c+d)-ab(a+b)(c+d)-ab(c+d)^2-cd(a+b)^2-cd(a+b)(c+d)}{(a+b+c+d)(a+b)(c+d)}\\&= \dfrac{(a+b)(c+d)((a+c)(b+d)-ab-cd)-cd(a+b)^2-ab(c+d)^2}{(a+b+c+d)(a+b)(c+d)}\\&=\small\dfrac{(a+b)(c+d)(ab+ad+bc+cd-ab-cd)-cd(a^2+2ab++b^2)-\tiny ab(c^2+2cd++d^2)}{(a+b+c+d)(a+b)(c+d)}\\&= \dfrac{(ac+ad+bc+bd)(ad+bc)-a^2cd-2abcd-b^2cd-abc^2-2abcd-abd^2}{(a+b+c+d)(a+b)(c+d)}\\&=\small\dfrac{a^2cd+abc^2+a^2d^2+abcd+abcd+b^2c^2+abd^2+b^2cd-a^2cd-2abcd-b^2cd-abc^2-2abcd-abd^2}{(a+b+c+d)(a+b)(c+d)}\\&=\dfrac{a^2d^2-2abcd+b^2c^2}{(a+b+c+d)(a+b)(c+d)}\\&=\dfrac{(ad-bc)^2}{(a+b+c+d)(a+b)(c+d)}\\& \ge 0\end{align*}$

since $(ad-bc)^2 \ge 0$ and $(a+b+c+d)(a+b)(c+d) >0$ for all positive real numbers $a, b, c, d$ and we're now done.
emo10.gif
emo38.gif


I am getting so tired of keep previewing the post because of so many fractions and terms that I have to deal with in this particular problem...My head is hurting me so bad now and my vision is blurred for a moment!
 
anemone said:
Thanks for your post, mente oscura! I have been trying to digest what you have come up with for some time, hoping to see the light at the end of the tunnel but I am sorry, I couldn't possibly continue from there.

I want to share the solution that I found with you and the rest of the members:

If we shift everything from the left to the right, we get

$\dfrac{1}{\dfrac{1}{a}+\dfrac{1}{b}}+\dfrac{1}{ \dfrac{1}{c}+\dfrac{1}{d}} \le \dfrac{1}{\dfrac{1}{a+c}+\dfrac{1}{b+d}}$

...

Hello. Uff.:p

My calculations are:

\dfrac{1}{\frac{1}{a}+\frac{1}{b}}+\dfrac{1}{\frac{1}{c}+\frac{1}{d}} \le \dfrac{1}{\frac{1}{a+c}+\frac{1}{b+d}}\dfrac{1}{\frac{a+b}{ab}}+\dfrac{1}{\frac{c+d}{cd}} \le \dfrac{1}{\frac{a+b+c+d}{(a+c)(b+d)}}\dfrac{\frac{c+d}{cd}+\frac{a+b}{ab}}{\frac{(a+b)(c+d)}{abcd}} \le \dfrac{(a+c)(b+d)}{a+b+c+d}\dfrac{ab(c+d)+cd(a+b)}{(a+b)(c+d)} \le \dfrac{(a+c)(b+d)}{a+b+c+d}\dfrac{[ab(c+d)+cd(a+b)](a+b+c+d)}{(a+b)(c+d)(a+c)(b+d)} \le{1}\dfrac{[ab(c+d)+cd(a+b)] \cancel{(a+c)}}{(a+b)(c+d) \cancel{(a+c)}(b+d)}+\dfrac{[ab(c+d)+cd(a+b)] \cancel{(b+d)}}{(a+b)(c+d)(a+c) \cancel{(b+d)}} \le{1}\dfrac{ab \cancel{c+d}}{(a+b) \cancel{(c+d)}(b+d)}+\dfrac{cd \cancel{a+b}}{\cancel{(a+b)}(c+d)(b+d)}+\dfrac{ab \cancel{c+d}}{(a+b) \cancel{(c+d)}(a+c)}+\dfrac{cd \cancel{a+b}}{\cancel{(a+b)}(c+d)(a+c)} \le{1}\dfrac{ab}{ab+ad+b^2+bd}+\dfrac{cd}{bc+bd+cd+d^2}+\dfrac{ab}{a^2+ab+ac+bc}+\dfrac{cd}{ac+ad+c^2+cd} \le{1}

The end:

\dfrac{1}{1+\frac{d}{b}+\frac{b}{a}+\frac{d}{a}}+ \dfrac{1}{1+\frac{b}{d}+\frac{b}{c}+\frac{d}{c}}+ \dfrac{1}{1+\frac{a}{b}+\frac{c}{b}+\frac{c}{a}}+ \dfrac{1}{1+\frac{a}{d}+\frac{a}{c}+\frac{c}{d}} \le{1}

And, from here, as set out in my previous post.

anemone, would already be can it Digest better?(Poolparty)

Regards.
 
Thank you again mente oscura for the clarification post. I appreciate it!
 
anemone said:
Prove that $\dfrac{1}{\dfrac{1}{a}+\dfrac{1}{b}}+\dfrac{1}{ \dfrac{1}{c}+\dfrac{1}{d}} \le \dfrac{1}{\dfrac{1}{a+c}+\dfrac{1}{b+d}}$ for all positive real numbers $a, b, c, d$.
$\dfrac{1}{\dfrac{1}{a}+\dfrac{1}{b}}+\dfrac{1}{ \dfrac{1}{c}+\dfrac{1}{d}}---
(1)$
$ \dfrac{1}{\dfrac{1}{a+c}+\dfrac{1}{b+d}}----(2)$
using $AP\geq GP :$
(1)$\leq\dfrac{\sqrt {ab}}{2}+\leq\dfrac{\sqrt {cd}}{2} $---(3)
(2)$\leq\dfrac{\sqrt {(a+c)(b+d)}}{2}$---(4)
$(3)^2=\dfrac {ab+cd+2\sqrt {abcd}}{4} ----(5)$
$(4)^2=\dfrac {ab+ad+bc+cd}{4}----(6)$
again using $AP\geq GP :$
$(6)\geq (5)$
and the proof is done
 
Last edited:
Albert said:
$\dfrac{1}{\dfrac{1}{a}+\dfrac{1}{b}}+\dfrac{1}{ \dfrac{1}{c}+\dfrac{1}{d}}---
(1)$
$ \dfrac{1}{\dfrac{1}{a+c}+\dfrac{1}{b+d}}----(2)$
using $AP\geq GP :$
(1)$\leq\dfrac{\sqrt {ab}}{2}+\leq\dfrac{\sqrt {cd}}{2} $---(3)
(2)$\leq\dfrac{\sqrt {(a+c)(b+d)}}{2}$---(4)
$(3)^2=\dfrac {ab+cd+2\sqrt {abcd}}{4} ----(5)$
$(4)^2=\dfrac {ab+ad+bc+bd}{4}----(6)$
again using $AP\geq GP :$
$(6)\geq (5)$
and the proof is done
may be I am missing something
but a< b, c < d, b < d does not imply a < c
 
sory a typo in (6)

$(3)^2=\dfrac {ab+cd+2\sqrt {abcd}}{4} ----(5)$
$(4)^2=\dfrac {ab+ad+bc+cd}{4}----(6)$
$ad+bc\geq 2\sqrt {abcd}$
 
Last edited by a moderator:
Albert said:
sory a typo in (6)

$(3)^2=\dfrac {ab+cd+2\sqrt {abcd}}{4} ----(5)$
$(4)^2=\dfrac {ab+ad+bc+cd}{4}----(6)$
$ad+bc\geq 2\sqrt {abcd}$

(6) > (5) => (3) < (4) is true

But (3) < (4) and (1) < (3) and (2) < (4) does not mean (1) < (2) .
 
  • #10
kaliprasad said:
(6) > (5) => (3) < (4) is true

But (3) < (4) and (1) < (3) and (2) < (4) does not mean (1) < (2) .

if (1)=(3) then a=b and c=d---(7)
if (2)=(4) then a+c=b+d---(8)
both (7) and (8) must hold together
(here a,b,c,d>0)
 
Last edited by a moderator:

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 8 ·
Replies
8
Views
2K
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
1K