Prove (n(n+1)(2n+1))/6 is Integer - Div Alg

  • Thread starter Thread starter MAGICMATHS
  • Start date Start date
  • Tags Tags
    Proof
MAGICMATHS
Messages
7
Reaction score
0
How can i prove that if n>=1, (n(n+1)(2n+1))/6 is an integer. The hint is to use the division algorithm such that n has one of the forms 6k,6k+1,..6k+5 and to work each case...I tried changing n to 6k but i failed immeaditely :(
 
Physics news on Phys.org
MAGICMATHS said:
How can i prove that if n>=1, (n(n+1)(2n+1))/6 is an integer. The hint is to use the division algorithm such that n has one of the forms 6k,6k+1,..6k+5 and to work each case...I tried changing n to 6k but i failed immeaditely :(


Check that no matter what natural \,n\, is, the number \,(n)(n+1)(2n+1)\, is always divisible both by 2 and 3.

DonAntonio
 
Looking at n "modulo 6" seems an awkward way of doing this. Looking at "modulo 2" and "modulo 3" separately is far easier.

Specifically, of any two consectutive numbers, such as n and n+1, one of them must be even. Now, n must be of the form 3k (a multiple of 3), 3k+1, or 3k+ 2. If n is a multiple of 3 then we have factors of both 3 and 2 in the product and so the product is divisible by 6. If n= 3k+2, then n+ 1= 3k+2+1= 3k+ 3= 3(k+1) so n+1 is a multiple of 3. If n= 3k+1, then 2n+ 1= 6k+ 2+ 1= 6k+ 3= 3(2k+1).

But since you specifically say "6k, 6k+ 1" etc.:

If n= 6k the n itself is divisible by 6 so the product is.

If n= 6k+ 1 then n+ 1= 6k+ 2= 2(3k+1) so n+ 1 is divisible by 2 and 2n+ 1= 12k+ 2+ 1= 12k+3= 3(3k+ 1) is a multiple of 3 so the product of n and 2n+1 is divisible by 6.

If n= 6k+ 2= 2(3k+1), n is divisible by 2. n+1= 6k+ 2+1= 6k+3= 3(2k+1) so n+1 is divisible by 3 and the product of n and n+1 is divisible by 6.

If n= 6k+ 3= 3(2k+1), n is divisible by 3. n+ 1= 6k+ 3+ 1= 6k+ 4= 2(3k+ 2) so n+ 1 is divisible by 2 and the product of n and n+1 is divisible by 6.

If n= 6k+ 4= 2(3k+ 2), n is divisible by 2. 2n+1= 12k+ 8+ 1= 12k+ 9= 3(4k+ 3) so n+1 is divisible by 3 and the product of n and n+1 is divisible by 6.

If n= 6k+ 5, n+ 1= 6k+ 6= 6(k+ 1) is divisible by 6.
 
Thanks DonAntonio, that's a very good clue which i did not think about. :)
 
Thanks HallsofIvy, youve made my work very easy now. :)
 
Thread 'Determine whether ##125## is a unit in ##\mathbb{Z_471}##'
This is the question, I understand the concept, in ##\mathbb{Z_n}## an element is a is a unit if and only if gcd( a,n) =1. My understanding of backwards substitution, ... i have using Euclidean algorithm, ##471 = 3⋅121 + 108## ##121 = 1⋅108 + 13## ##108 =8⋅13+4## ##13=3⋅4+1## ##4=4⋅1+0## using back-substitution, ##1=13-3⋅4## ##=(121-1⋅108)-3(108-8⋅13)## ... ##= 121-(471-3⋅121)-3⋅471+9⋅121+24⋅121-24(471-3⋅121## ##=121-471+3⋅121-3⋅471+9⋅121+24⋅121-24⋅471+72⋅121##...
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
Back
Top